МЕТ0ДИЧЕСКИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО КУРСУ «ОСНОВЫ НАУЧНЫХ ИССЛЕДОВАНИЙ»

Киев КПИ 1988

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО КУРСУ "основы научных исследований" для студентов специальности "Химическая технология тугоплавких неметаллических и силикатных материалов"

Утверждено на заседании кафедры химической технологии вяжущих веществ Протокол № 4 от 30.11.87 г.

Киев КПИ 1988

В промышленности строительных материалов, в лабораториях научноисследовательских институтов и заводов по производству силикатных материалов в последние десятилетия широкое распространение получили различные методы физико-химического термический анализа: И рентгеновский анализы, молекулярная спектроскопия. Поэтому специалисты по технологии силикатных материалов обязаны хорошо владеть указанными современными методами Настоящие методические указания разработаны исследования. с целью совершенствования знаний студентов специальности "Химическая технология тугоплавких неметаллических и силикатных материалов" по расшифровке дериватограмм, дифрактограмм и ИК спектров силикатных материалов при проведении практических занятий по курсу "Основы научных исследований", а также при выполнении научно-исследовательской работы на кафедре химической технологии вяжущих веществ.

I. Термический анализ

Из курса "Физическая химия силикатов" студенты знают, что большинство физических и химических процессов в силикатных материалах сопровождаются выделением (экзотермические процессы) или поглощением теплоты экзотермическим (эндотермические процессы). К относятся процессам полиморфные превращения энантиотропного характера, десорбция, плавление, сублимация, испарение, реакции разложения (диссоциация, дегидратация и др.), десольватация, окисление и восстановление и т.д.

С помощью термических методов анализа изучают фазовые превращения, происходящие в сложных системах или отдельных минералах при их нагревании, по сопровождающим их тепловым экзотермическим к эндотермическим эффектам.

Исследуемый материал подвергают постепенному нагреванию с непрерывной регистрацией температуры. По полученным кривым нагревания изучают характер и интенсивность тепловых эффектов, температурные интервалы их проявления, на основании чего судят о минералогическом составе исследуемого материала и характере протекающих в нем фазовых превращений.

Существует много разновидностей термического метода анализа. позволяющих определять непрерывное изменение некоторых важных свойств материала в процессе его нагревания: энергии системы, ее массы, количества теплоты, подводимой к образцу, удельной теплоемкости, оптических констант, линейных И объемных изменений размеров образца, электрического сопротивления, концентрации вещества, объема и состава выделившихся газов и Т.П.

Таким образом, методы термического анализа позволяют получать разностороннюю информацию о важнейших физико-химических свойствах силикатных материалов.

Различные методы термического анализа применяют самостоятельно или в сочетании с другими методами физико-химического анализа. В последние годы широкое распространение получили термические установки, позволяющие осуществлять комплексный термический анализ силикатных материалов.

Рассмотрим сущность некоторых наиболее широко применяемых при исследовании силикатных материалов методов термического анализа.

1.1. Дифференциальный термический анализ (ДТА)

ДТА - важнейший метод термического анализа. Он позволяет измерять изменение энергии системы В процессе нагревания, физико-химические выделением или поглощением теплоты. процессы. сопровождающиеся на дифференциальной кривой регистрируются ЭКЗОнепрерывной серией И эндотермических, эффектов.

Регистрация изменения теплосодержания системы (простая температурная простой термопары 1.1.a) осушествляется с помощью (рис. кривая) И веществе происходит гальванометра. Если В исследуемом не никаких превращений, то простая кривая нагревания представляет собой прямую. Если же физико-химические исследуемом веществе имеют место процессы, В сопровождающиеся изменением теплосодержания системы. наблюдается временное отклонение кривой нагревания от прямолинейной зависимости, прекращающееся по окончании реакции (рис. 1.2, кривая I).

Дифференциальную температурную кривую (кривую ДТА) можно получить с помощью дифференциальной термопары (рис. 1.1,б) состоящей из двух

Рис. 1.1. Схема простой (а) и дифференциальной термопары (б): *Pt*- проволока из платины; *Pt*+ 10% *Rh* - проволока из платинородиевого сплава; I - образец; 2 – эталон; 3 - гальванометр

простых термопар, соединенных друг с другом одноименными концами с образованием холодного спая. Горячие спаи термопары помещаются в исследуемое вещество I и эталон 2. Если в исследуемом веществе и в эталоне при равномерном нагревании не происходит никаких физико-химических превращений, то возникающие в обеих ветвях дифференциальной термопары ЭДС направлены навстречу друг другу и взаимно компенсируются. Гальванометр не отклоняется, а дифференциальная кривая параллельна оси абсцисс. Если в исследуемом веществе происходят процессы, сопровождающиеся выделением (или поглощением) энергии, то его температура будет выше (или ниже) температуры эталона.

Рис. 1.2. Схема простой и дифференциальной кривых нагревания: І - простая температурная кривая; 2- Дифференциальная кривая; 3 - базисная (нулевая) линия

Прибор зафиксирует это изменение: дифференциальная кривая отклонятся вверх от базисной линии при экзотермических и вниз - при эндотермических процессах. Величина температурного пика служит показать интенсивности протекающей реакции и количества превращающегося вещества.

1.1.1. Определение характеристик термических эффектов

С целью извлечения максимальной информации из кривой ДТА студент обязан уметь расшифровывать кривую. Сущность данного вопроса состоит в идентификации термических эффектов и определении их характеристик. Термические эффекты характеризуются температурными границами протекания процессов (начала, максимальной скорости протекания и конца), площадью и амплитудой. Форма пика зависит от скорости подъема температуры в печи и от количества исследуемого материала. При медленном нагревании образуются широкие и округлые пики, при быстром - узкие и острые. Для получения воспроизводимых результатов скорость нагрева должна быть постоянной во всем исследуемом диапазоне температур.

В зависимости от формы пика характеристические температуры (температуры, при которых кривая отклоняется от базисной линии) определяют тремя различными методами. При резких перегибах кривой характеристическую температуру определяют по точке перегиба (рис. 1.3,а, точка I), при плавном перегибе - пересечением экстраполяционной линии *C* линейного участка ветви пика и базисной линии (рис 1.3,6, точка 2) или в точке касания прямой, проведенной под углом 45° к базисной линии рис. 1.3,6, точка 3).

Рис.1.3. Определение характеристической температуры процесса (а, б), ширины пика (в, г) и глубины пика (в, д)

Температуру реакции (температуру вершины эндо- или экзотермического эффекта)используют для сравнения различных реакций.

В практике ДТА обычно определяют и температурный интервал пикаинтервал между точкой, в которой наблюдается отклонение кривой от базисной линии, и точкой, в которой кривая вновь касается базисной линии после завершения реакции.

Ширина пика - это расстояние между точками начала и окончания эндоили экзотермического эффекта (рис. 1.3, в, отрезок АВ). При плавном перегибе кривой ширину пика можно определить путем экстраполяции. Для этого линейные участки обеих ветвей пика экстраполируют до пересечения с прямой АВ. Отрезок ЕД (рис. 1.3,в) - ширина пика. Если кривая по окончании реакции не возвращается на базисную линию, ширину пика можно определить двумя способами, ЭТО показано на рис. 1.3,г. По первому способу как экстраполяционные линии пересекают линию, соединяющую начало и конец кривой термоэффекта (ширина пика FG), по второму - линию AB, являющуюся продолжением базисной линии (ширина пика НВ).

Глубина пика (амплитуда) прямо пропорциональна количеству теплоты, выделяющейся или поглощающейся при реакции, и определяется как высота по отношению к базисной линии. При отсутствии сдвига базисной линии (рис. 1.3,в) глубина пика равна отрезку *KL*. В тех случаях, когда при термическом эффекте изменяется положение базисной линии, для определения амплитуды пика используют два метода. В соответствии с первым методом, за амплитуду пика принимают вертикальную линию *ME*, проведенную от вершины пика к базисной линии AB (рис 1.3,д). По второму методу высотой пика считают отрезок *MN* между вершиной пика и линией *NД*.

При количественных исследованиях необходимо точно определять площадь, описываемую пиками. Площадь пика наиболее удобно определять графически с помощью планиметра либо путем взвешивания бумаги с известной плотностью, из которой вырезают фигуру, соответствующую конфигурации исследуемого пика. 1.1.2. Факторы, влияющие на результаты ДТА

Студент должен уяснить, что результаты термического анализа одного и того же вещества существенным образом зависят от методики подготовки образцов (методов сушки, количества анализируемого вещества и степени его разбавления инертным материалом, степени закристаллизованности частиц вещества и их размеров, плотности образцов, теплоемкости и теплопроводности исследуемых материалов и эталонного вещества, увеличения в размерах и усадки образцов и др.) и техники проведения эксперимента (вида, формы и размеров держателей образцов; различий в конструкции печей; диаметра, вида изоляции и местоположения термопар, скоростей нагрева чувствительности регистрирующих приборов). Рассмотрим наиболее существенные факторы, которые необходимо учитывать при проведении ДТА.

<u>Подготовка образцов.</u> Методика подготовки образцов зависит от вида исследуемого материала. Гидратированный цементный камень измельчают в ступке, из навески массой 1...2 г удаляют остаточную влагу путем обработки под вакуумом этанолом, а затем серным эфиром. Высушенный порошок просеивают через сито № 006 (10000 отв./см²), отбирают из него пробу массой 0,3...0,5г и помещают в тигель. Для получения воспроизводимых результатов масса навески исследуемого материала, степень уплотнения материала и эталона в тигле должны быть одинаковыми.

При подготовке образцов из глинистых, материалов необходимо учитывать их высокую адсорбционную способность по отношению к влаге воздуха, ввиду чего образцы из глин нецелесообразно сушить до воздушно-сухого состояния. Во избежание ошибок при проведении термического анализа образцы из глин необходимо исследовать в воздушно-влажном состоянии. С этой целью глины перед термическим анализом выдерживают над насыщенными водными растворами солей $Ca(NO_3)_2 \cdot 4H_2O$ или $Mg(NO_3)_2 \cdot 5H_2O$ обеспечивающими сохранение постоянной влажности препаратов. Прессованные образцы из глин целесообразно предварительно выдерживать под вакуумом над насыщенным раствором соли не менее 4 сут. Такая подготовка препаратов из глин обеспечивает четкий эндотермический эффект характеризующий адсорбционные свойства вещества.

Плотные природные (кварц, доломит, известняк, полевой шпат и др.) и искусственные (известь, гипс и др.) материалы измельчают до требуемой тонкости помола, высушивают до воздушно-сухого состояния и подвергают анализу.

<u>Масса навески и скорость нагревания.</u> Масса навески определяется тепловым эффектом реакции в исследуемом диапазоне температур и зависит от скорости подъема температуры в печи. Между скоростью нагревания и массой навески существует зависимость:

$$\tau = km \qquad (1.1)$$

где т- продолжительность анализа при нагреве от комнатной температуры до 1000 0 С,мин; κ - константа, равная 0,3; m - масса навески конечного продукта, мг. Например, для глин при скорости нагревания в I мин на 5...10 °С масса навески должна составлять 0,3...2,0 г, а при скорости нагревания в I мин на

50...60 °С -0,1 г.

При ДТА используют навески материала от 0,05...0,3 до 10... 12 г. Хорошая чувствительность ДТА достигается при использовании навесок препарата массой 0,2...0,5 г. Массы навесок исследуемого и эталонного материалов должны быть близкими.

Уменьшение массы навески исследуемого вещества повышает разрешающую способность метода, позволяет получать равномерное распределение температурного поля в образце и, как следствие, - сократить время физико-химических превращений. Термоэффекты приобретают более заостренную форму, их площадь уменьшается.

Увеличение массы навески исследуемого материала сопровождается расширением пиков, увеличением их площади, сдвигом интервалов температур и взаимным наложением термоэффектов.

Для получения воспроизводимых результатов скорость нагревания должна быть постоянной в исследуемом диапазоне температур. При увеличении скорости нагревания возрастает интенсивность, изменяется форма термоэффектов - они становятся более узкими и четкими и сдвигаются в сторону более высоких температур. Нагревание с большой скоростью может вызвать слияние примыкающих друг к другу двух пиков. С уменьшением скорости нагревания на кривой ДТА получаются более широкие пики, смещенные в сторону пониженных температур.

Обычно при термическом анализе глин (масса навески 0,2...0,5 г) скорость нагревания составляет 10°С/мин, при анализе гидратированного цементного камня (масса навески 0,2...0,5 г) – 7...15 °С/мин.

<u>Размер частиц и степень закристаллизованности</u> оказывают существенное влияние на площадь и температуры термоэффектов. Чем меньше размеры частиц исследуемого материала, тем при более низких температурах протекают реакции, изменяется интенсивность и площадь пиков, происходит их смещение в сторону более низких температур. Например, при изучении пиритов с уменьшением размера частиц от 20 до 2 мкм температура термоэффекта снижалась примерно на 100 °C. Такое же снижение температуры термоэффекта наблюдалось при уменьшении размеров частиц кварца от 200 до 2 мкм.

В некоторых случаях при увеличении тонкости помола могут появляться новые термоэффекты или, наоборот, в результате частичного разрушения кристаллической решетки исследуемого материала исчезают пики, характерные для данного материала. Например, длительное измельчение карбоната кальция приводит к разрушению кристаллической решетки и разложению, а измельчение доломита в вибромельнице до размеров частиц 0,06...0,09 мкм сопровождается почти полным исчезновением эндоэффекта разложения MaCO₃.

Термические эффекты для веществ с низкой степенью кристалличности смещаются в сторону более низких температур.

Для получения воспроизводимых результатов необходимо, чтобы гранулометрический состав был по возможности однородным, что обеспечивает получение образцов с постоянной плотностью упаковки.

При термических исследованиях силикатных материалов образцы необходимо измельчать до полного прохождения через сито № 006 (размер отверстия составляет 60 мкм).

<u>Степень уплотнения исследуемого вещества</u> также влияет на характер кривых ДТА. При неоднородном уплотнении образцов изменяется интенсивность пиков и положение базисной линии. Слабое уплотнение увеличивает содержание воздуха в пробе, что влияет на теплоотдачу и уменьшает интенсивность пиков термоэффектов. Слишком сильное уплотнение затрудняет газовыделения из образца, замедляя дальнейшее разложение материала.

<u>Однородность уплотнения</u> достигается тщательной ручной трамбовкой материала либо путем применения специальных приспособлений. Степени уплотнения исследуемого вещества и эталона должны быть одинаковыми. В противном случае их теплопроводность при нагревании, особенно при низких температурах, будет различной, и кривая ДТА отклонится от базисной линии.

<u>Теплопроводность и теплоемкость.</u> Отклонение кривой ДТА от базисной линии всегда обусловлено различием в коэффициентах температуропроводности образца и эталона. Одним из основных методов уменьшения такого отклонения является разбавление исследуемого вещества эталонным. Однако увеличение, степени разбавления вызывает уменьшение интенсивности термических эффектов. Если разбавитель имеет высокую теплоемкость, уменьшается и площадь пиков термоэффектов.

<u>Усадка и вспучивание образцов.</u> Многие силикатные материалы в процессе нагревания претерпевают физико-химические превращения, сопровождающиеся усадкой или вспучиванием. При изменении размеров образца в процессе нагревания изменяются его тепловые константы, что приводит к отклонению кривой ДТА от базисной линии. При больших усадках образца может даже появиться "ложный" эффект на кривой ДТА, обусловленный образованием зазора между образцом и держателем. Возможное образование газовой фазы приводит к вспучиванию образца, что также вызывает заметное отклонение кривой ДТА от нулевой линии. Вредное влияние усадки и вспучивания образцов частично устраняется при разбавлении исследуемого вещества инертным материалом, например, глиноземом.

Среда может быть В печи нейтральной, окислительной И физико-химические процессы восстановительной. Если сопровождаются изменением массы вещества (например, реакции дегидратации, декарбонизации и др.) среда в печи оказывает влияние на характер кривых ДТА. Начало и таких процессов зависят от парциального давления продолжительность выделяющихся газов, в связи, с чем при проведении ДТА необходимо точно контролировать температуру, давление и характер газовой среды. Наличие в печи на характер кривых ДТА. Однако вакуума не влияет для реакций, сопровождающихся газовыделениями, нагрев в вакууме сдвигает пики в область более низких температур. Окислительные реакции можно предотвратить, проводя ДТА в вакууме либо в атмосфере азота, аргона или гелия.

Наличие небольших количеств примесей иногда существенно влияет на ход кривой ДТА. Например, при весьма малых количествах примеси хлорида натрия в доломите изменяется соотношение площадей пиков термоэффектов.

Присутствие в составе исследуемого материала органических примесей, дающих дополнительный экзоэффект, создает в печи нейтральную атмосферу. Вводимые при этом азот, аргон и другие газы предотвращают окисление органических примесей, вызывая их пиролиз (превращение органических соединений в результате их деструкции под действием высокой температуры) или испарение.

Наличие термоэффектов в близких между собой температурных интервалах затрудняет их идентификацию. В таких случаях снижают скорость нагревания и уменьшает массу исследуемого вещества.

Выбор эталона. Основное требование к эталонному веществу - отсутствие в нем физико-химических превращений в исследуемом интервале температур. Кроме того, теплопроводность и теплоемкость эталонного и исследуемого веществ должны быть близкими *С* целью приближения тепловых констант эталона и исследуемого вещества последнее разбавляют не реагирующим с ним инертным веществом..

Обычно в качестве эталона используют прокаленные при температуре 1300°С *α*-*Al*₂*O* или *MgO*, а при низких температурах – *NaCl* или *KCl*..

Чтобы свести к минимуму сдвиг базисной линии, дисперсность эталонного и исследуемого веществ и степень их уплотнения должны быть одинаковыми. Положение базисной линии удается стабилизировать, если произведения массы на теплоемкость для исследуемого и эталонного веществ будут равны: $m_1c_1 = m_2 c_2$.

При неправильном подборе эталонного вещества теплопроводность и теплоемкость исследуемого и эталонного веществ отличаются, и кривая ДТА будет отклоняться от базисной линии.

Если теплоемкость эталонного вещества выше, чем у исследуемого, а теплопроводность – ниже, то кривая ДТА отклоняется вверх от базисной линии. Аналогично отклоняется кривая ДТА, если исследуемое вещество взято в меньшем количестве по сравнений с эталонным.

Держатели образцов изготавливают из керамики (глинозема), кварца, графита, различных металлов (Zn, Be, Ni, Pt, Ag, Cu) и сплавов (бронза, нержавеющая сталь др.). Материал держателя обладает высокой И теплопроводностью, вследствие чего кривые термических эффектов имеют малый угол наклона и меньшую интенсивность, чем при использовании держателей, керамических уменьшается сдвиг базисной линии. Менее теплопроводные керамические держатели дают более интенсивные пики при той же массе навески, однако их повышенная пористость может повлиять на форму термоэффекта.

<u>Нагревательные печи</u> обеспечивают равномерное нагревание исследуемого образца, их применение позволяет получать качественные кривые ДТА.

В зависимости от требуемой конечной температуры анализа нагреватели печей выполняют из различных материалов: нихрома (до 1100 °C), молибдена (до 1200 °C), тантала (до 1330 °C), платины (до 1400 °C), силита (до 1500 °0), родия (до 1800 °C), вольфрама (до 2800 °C) и т.д. В некоторых случаях применяют каскадные печи с двойным обогревом.

В ряде случаев термический анализ проводят при отрицательных температурах. При этом блок с анализируемым веществом охлаждают жидким азотом.

Существуют конструкции печей с непрерывной подачей газов, обеспечивающие окислительную, восстановительную или нейтральную среды. Парциальное давление газов при этом можно регулировать.

<u>Термопары.</u> Для предотвращения сдвига базисной линии спаи термопар, погруженные в эталонное и исследуемое вещество, должны быть одинаковы, так как спай большего диаметра обладает большей теплоемкостью. Диаметр проволоки также оказывает влияние на результаты ДТА; увеличение диаметра проволоки снижает удельную теплопроводность, увеличивая при этом электрическое сопротивление.

Спай термопары должен находиться в центре образца, симметрично по отношению к стенкам тигля, верхней и нижней поверхности образца.

Термопары не должны взаимодействовать с образцом, для чего их помещают в защитный кожух. Тип применяемой термопары определяется измеряемой температурой. Например, для температур до 1200 °C применяют хромель-алюмелевую, до 1400 °C – платино - платинородиевую термопару и т.п.

1.2. Качественный фазовый анализ

Наиболее часто студенты сталкиваются с качественным фазовым анализом. Сущность метода состоит в том, что температурные интервалы физикохимических превращений веществ остаются практически постоянными независимо от того, находится исследуемое вещество в чистом виде или в смеси с другими веществами. Это позволяет идентифицировать различные минералы температурные аффекты, соответствующие (соединения), если физикохимическим превращениям данных минералов, не совпадают. При наличии в минерале нескольких термических эффектов совпадение некоторых из них не является препятствием к правильному качественному анализу.

Расшифровку термограмм осуществляют следующим образом. Записанные на приборе кривые (рис. 1.4) нуждаются в дополнительном оформлении.

Рис. 1.4. Термограмма каолинита: I - кривая изменения температуры материала во времени; 2 - кривая ДТА

Проводят ось абсцисс по нулевым точкам, засвеченным на фотобумаге пучками свата от гальванометров, находящихся в исходном положении. Через точку начала записи температурной кривой проводят ось ординат перпендикулярно к оси абсцисс. На оси абсцисс откладывают время в минутах в масштабе, зависящем от скорости вращения барабана, на оси ординат - температурную шкалу (рис. 1.4,а). Температуру любого термоэффекта устанавливают с помощью кривой I. Например, для точки *C* проводят линию, параллельную оси ординат, до пересечения с кривой I; полученную температуру переносят на ось ординат, проведя через точку C₁ линию, параллельную оси абсцисс, до пересечения с осью ординат.

При наличии температурной линейки нет необходимости градуировать оси ординат и абсцисс, и тогда на термограммах проставляют лишь температуры термических эффектов (рис. 1.4,6).

Расшифровку термограмм неизвестного вещества проводят по температурам превращений путем их сравнения с температурами превращений известных веществ. В настоящее время изучено и описано в литературе большое количество различных веществ и соединений. Термические эффекты некоторых наиболее употребительных силикатных материалов приведены в табл. 1.1. Если имеющиеся литературные данные не позволяют достаточно надежно установить природу термоэффекта, то для его идентификации наряду о термическим анализом привлекают другие методы анализа - рентгенофазовый анализ, петрографический анализ, ИК спектроскопию и др.

Таблица 1.1

термические эффекты некоторых силикатных материалов								
Наименование и формула	Температура	Природа эффекта						
минерала	эффекта, °С							
1	2	3						
Кальцит СаСО ₃	(-)860-1100	Диссоциация (44% СО ₂)						
Арагонит СаСО3	(-)390-447	Полиморфное						
		превращение в кальцит						
	(-)860-1100	Диссоциация (44% CO ₂)						
Магнезит МgCO ₃	(-)540-710	Диссоциация (52,2% CO ₂)						
Гидрокарбонат магния MgCO ₃ ·3H ₂ O	(-)170-210	Дегидратация (потеря 2 моль H ₂ O)						
	(-)400-450	Дегидратация (потеря 1 моль H ₂ O)						
	(-)500-530	Диссоциация MgCO ₃						
	(+)530-600	Кристаллизация аморфного MgO						
Доломит СаМg(СО ₃) ₂	(-)600-790	Распад доломита на СаСО ₃ и						
		МдСО3 и диссоциация МдСО3						
		(23,9% CO ₂)						
	(-)830-940	Диссоциация CaCO ₃						
Сидерит FeCO ₃	(-)350-585	Диссоциация (38% CO ₂)						
	(+)600	Окисление FeO до Fe ₂ O ₃						
	(+)830							
Стронцианит SrCO ₃	(-)930-1200	Диссоциация SrCO ₃						
Витерит ВаСО ₃	(-)835	Полиморфизм ВаСО ₃						
	(-) 9/0-980	H D C C						
	(-)1200	Диссоциация ВаСО ₃						
Родохрозит MnCO ₃	(-)100-350	Потеря адсороционной воды						
	(-)425-650	Диссоциация $MnCO_3$ (38,4%)						

Термические эффекты некоторых силикатных материалов

		CO ₂)
	(+)730-800	Окисление MnO и Mn ₃ O ₄
	(-)900-1000	Разложение Мn ₂ O ₃ с
		образованием Mn ₃ O ₄
	(-)1100-1200	Инверсионное превращение
		Мп ₃ О ₄ из тетрагональной в
		кубическую форму
Смитсонит ZnCO ₃	(-)425-550	Диссоциация ZnCO ₃
Брусит Mg(OH) ₂	(-)400-550	Дегидратация (31% H ₂ O)
Гидроксид кальция	(-)530-585	Дегидратация
(портландит) Са(ОН) ₂		
Железистый магнезит	(-)500-590	Диссоциация
$(Mg, Fe)CO_2$	(+)755	Окисление FeO до Fe ₂ O ₃
Гидромагнезит	(-)275-375	Дегидратация Mg(OH) ₂
$3MnCO_3$ · $Mg(OH)_2$ ·3 H_2O	(+)510	Превращение аморфного MgO в
		кристаллический периклаз
	(-)485-610	Диссоциация MgCO ₃
Диаспор β-AlO(OH)	(-)505-580	Дегидратация
	(+)850-950	γ - Al ₂ O ₃ $\rightarrow \alpha$ - Al ₂ O ₃
Бёмита α -AlO(OH)	(-)460-580	Дегидратация
	(+)850-950	γ - Al ₂ O ₃ $\rightarrow \alpha$ - Al ₂ O ₃
Гиббсит α -Al(OH) ₃	(-)250-300	Образование бёмита
	(-)500-550	Дегидратация бёмита
	(+)800	γ - Al ₂ O ₃ $\rightarrow \alpha$ - Al ₂ O ₃
Байерит β -Al ₂ O ₃ ·3H ₂ O	(-)250-300	Частичная дегидратация
гидраргилит	(-)310-315	Переход в бёмит
	(-)500-550	Разложение бёмита
	(+)800	Переход γ - Al ₂ O ₃ $\rightarrow \alpha$ -
		Al_2O_3
Гетит FeO(OH)	(-)300-420	Дегидратация (10% H ₂ O)
	(-)680	γ - Fe ₂ O ₃ $\rightarrow \alpha$ - Fe ₂ O ₃
Лимонит β -Fe ₂ O ₃ ·H ₂ O	(-)120-140	Потеря гигроскопичной
β- FeO(OH)	() - 0	воды
	(-)250	Дегидратация
	(-)300	
	(+)450	Переход
		γ - Fe ₂ O ₃ $\rightarrow \alpha$ - Fe ₂ O ₃
Гелеобразные оксиды	(-)250-300	Дегидратация
железа Fe ₂ O ₃ ·nH ₂ O	(+)350-400	Окисление
Вюстит FeO	(+)294-300	Окисление FeO до α -Fe ₂ O ₃
I ематит α - Fe ₂ O ₃	(-)6/8	Переход в γ - Fe ₂ O ₃
Маггемит γ - Fe ₂ O ₃	(+)450-500	Переход γ - Fe ₂ O ₃ $\rightarrow \alpha$ -
		Fe ₂ O ₃
Магнетит Fe ₃ O ₄	(+)250-400	Переход
		$Fe_3O_4 \rightarrow \gamma - Fe_2O_3$
	(+)590-1000	Переход

			γ - Fe ₂ O ₃ $\rightarrow \alpha$ - Fe ₂ O ₃
	Гидрогематит	(-)120-140	Дегидратация
Fe ₂ O ₃	3·nH ₂ O	(-)340	· · · · ·
	Диоксид кремния SiO ₂	(-)573	Превращение кварца
			$\alpha \rightarrow \beta$
	Двуводный гипс	(-)100-120	Потеря адсорбционной
CaSO	$0_4 \cdot 2H_2O$		воды
		(-)180	Дегидратация до
			$CaSO_4 \cdot 0, 5H_2O$
		(-)220	Потеря 0,5 H ₂ O
		(+)380-420	Инверсия CaSO ₄
		(-)1180-1200	Полиморфное
			превращение
	Ангидрит CaSO ₄	(-)1190	Полиморфное
			превращение
	Гипс полуводный	(-)160	Дегидратация примесной
	$CaSO_4 \cdot 0, 5H_2O$		влаги
	(α - модификация)	(-)240	Потеря 0,5 H ₂ O
		(+)380-420	Инверсия ангидрита
		(-)1180-1200	Полиморфное
			превращение
	Гипс полуводный	(-)120	Дегидратация примесной
	$CaSO_4 \cdot 0, 5H_2O$		влаги
	(β - модификация)	(-)180	Дегидратация примесной
			влаги
		(-)240	Потеря 0,5 H ₂ O
		(+)410	Инверсия ангидрита
		(-)1180-1200	Полиморфное
			превращение
Эстри	их гипс CaSO₄·nCaO	Не имее	т эффектов
		()55 50	Ишентрионтное
	Эпсомит мідзо4 /1120	(-)55-58	инконтрусттнос
		()85.00	Инконструентное
		(-)85-90	
		(_)105_110	Выкипание раствора
		(-)105-110 (-)125-150	Легилратания
		(-)125-130 (-)185-195	Легидратация до
		()105 175	олноволной соли
		(-)320-370	Полная легилратация
	Барит BaSO₄	(-)1150	Обратимое полиморфное
	Dupni Dub04	()1150	превращение
	Пепестин SrSO₄	(-)11450	Обратимое полиморфное
		()	преврашение
	Тенардит NaSO₄	(-)240	Полиморфное
		()210	преврашение
		(-)884	Плавление
		14	

Арканит К ₂ SO ₄	(-)583	Полиморфное
		превращение
Глазерит	(-)437	Полиморфное
$NaSO_4 \cdot 3K_2SO_4$		превращение
	(-)940	Плавление
Каолинит	(-)480-610	Дегидратация
$Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$	(+)925-1050	Кристаллизация
		аморфных продуктов,
		образование муллита
Аллофан	(-)110-150	Дегидратация
mAl ₂ O ₃ ·nSiO ₂ ·pH ₂ O	(-)920-1000	Перекристаллизация
		аморфной фазы
Галлуазит	(-)50-140	Адсорбционная вода
$Al_2O_3 \cdot 2SiO_2 \cdot 4H_2O$	(-)405-555	Дегидратация
	(+)925-1060	Кристаллизация
		аморфных продуктов
Монтмориллонит	(-)50-175	Адсорбционная вода
Al ₂ O ₃ ·4SiO ₂ ·nH ₂ O	(-)200-235	Пакетная вода
	(-)500-760	Дегидратация
	(-)800-900	Разрушение решетки
	(+)900-1000	Кристаллизация
		аморфной фазы
Мусковит	(-)125	Адсорбционная вода
$K_2O \cdot Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$	(-)750-850	Дегидратация
	(-)1020-1090	Разрушение решетки
Биотит	(-)1100-1200	Разрушение решетки
$K_2O{\cdot}6(Mg,Fe)O{\cdot}Al_2O_3^*$	(+)1200	Кристаллизация
*6SiO ₂ ·2H ₂ O		-
Гидробиотит	(-)160-180	Дегидратация
$K_2O.6(Mg,Fe)O.Al_2O_3*$	(-)220-250	
$*6SiO_2 \cdot 2H_2O$	(-)800-1000	Разрушение решетки
Вермикулит, группа	(-)80-170	Адсорбционная вода
гидрослюд	(-)225-265	Адсорбционная вода
	(-)815-850	Конституционная вода
	(+)865	Кристаллизация
Глауконит, группа	(-)40-170	Адсорбционная вода
гидрослюд	(+)400-440	Окисление
		FeO до Fe ₂ O ₃
	(-)440-510	Конституционная вода
Иллит, группа гидрослюд	(-)100-170	Адсорбционная вода
	(-)500-650	Дегидратация
	(-)840-900	Разрушение решетки
	(+)900-980	Кристаллизация шпиняли,
	· /	периклаза
Боксит, группа	(-)285-310	Дегидратация
гидрослюд	. /	гидраргилита
Змеевик	(-)100-170	Дегидратация
	· · ·	· · · •

$3MgO \cdot 2SiO_2 \cdot 2H_2O$	(-)650-800	"
(серпентин)	(+)800-900	Кристаллизация
Хризотиласбест	(-)до 100	Потеря адсорбционной
$Mg_6[Si_4O_{11}](OH)_6 H_2O$		воды
-	(-)100-150	Удаление
	(-)700-800	конституционной воды
	(+)800-900	Кристаллизация новой
		фазы
Тальк 3MgO·4SiO ₂ ·H ₂ O	(-)800-950	Дегидратация
Двухкальциевый	(-)700-720	Переход
силикат		$\beta - C_2 S \rightarrow \alpha'_L - C_2 S$
β -2CaO·SiO ₂	(-)1160	Переход
		$\alpha'_L - C_2 S \rightarrow \alpha'_H - C_2 S$
Трехкальциевый	(-)600-620	Превращение
силикат	(-)920-925	Полиморфное
3CaO·SiO ₂		превращение
	(-)970-980	Полиморфное
		превращение
	(-)990-1000	
Алит	(-)920-925	Полиморфное
54CaO·16SiO ₂ ·Al ₂ O ₃ ·MgO		превращение
	(-)980-990	Полиморфное
		превращение
Ксонотлит	(-)775-880	Дегидратация до
6CaO·6SiO ₂ ·H ₂ O		волостанита
Гиролит	(-)140-150	Дегидратация
$2CaO\cdot 3SiO_2\cdot 2H_2O$	(-)700-800	Кристаллизация
		волластонита
	(+)820	Кристаллизация
		$\alpha - CS$
Тоберморит	(-)230-280	Дегидратация
$4CaO \cdot 5SiO_2 \cdot 5H_2O$	(+)800-850	Кристаллизация
Гидросиликат кальция	(+)800-860	Кристаллизация
$CaO \cdot SiO_2 \cdot H_2O$ (CS H-B)		волластонита
Гидросиликат кальция	Нет отч	етливых эффектов
$CaO \cdot SiO_2 \cdot H_2O$ (CS H-A)		
Гидросиликат кальция	(-)400-440	Дегидратация
$2CaO\cdot SiO_2 \cdot H_2O(C_2S H-A)$	(-)450-540	دد
Гидросиликат кальция	(-)500-	66
(гиллебрандит)	630	
$CaO \cdot SiO_2 \cdot H_2O$ (CS H-B)		
Гидросиликат кальция	(-)720-800	Дегидратация
$2CaO\cdot SiO_2 \cdot H_2O(C_2S H-C)$		
Гидросиликат кальция	(-)110-150	Дегидратация
$2CaO \cdot SiO_2 \cdot 2H_2O(C_2SH_2)$	(-)480-520	-//-

Гидросиликат кальция 3CaO·SiO ₂ ·2H ₂ O (C ₃ SH ₂) Гидроалюминат кальция CaO· Al ₂ O ₃ ·10H ₂ O	(-)500-600 (-)700-800 (-)155 (-)285	Потеря 1 молекулы воды Полная дегидратация Ступенчатая дегидратация
	(+)545	Кристаллизация
	(+)930	безводных фаз СА
Гидроалюминат	(-)/0-100	Потеря гигроскопичной
кальция 2CaO· AI_2O_3 ·8H ₂ O	()150 200	воды
	(-)150-200	Ступенчатая дегидратация
-	(-)250-320	-
Гидроалюминат	(-)330-340	Потеря 4,5 моль H ₂ O
кальция $3CaO \cdot Al_2O_3 \cdot 6H_2O$	(-)500-550	Потеря 1,5 моль H ₂ O и
		дегидратация Ca(OH) ₂
Гидроалюминат	(-)140-170	
кальция 4CaO· Al ₂ O ₃ ·14H ₂ O	(-)180-220	Ступенчатая дегидратация
	(-)300	
Гидросульфоалюминат	(-)100-200	Потеря большей части воды
кальция (высокосульфатная	(-)250-300	Полная дегидратация
форма)		
$3CaO \cdot Al_2O_3 \cdot 3CaSO_4 \cdot 31H_2O$		
Карбоалюминат	(-)180	Ступенчатая дегидратация
кальция	(-)230	
$3CaO \cdot Al_2O_3 \cdot CaCO_3 \cdot 12H_2O$		
Гидроалюминат	(-)700-800	Полная дегидратация
кальция 4CaO·3Al ₂ O ₃ ·3H ₂ O		
Гидросиликат натрия	(-)63	Инконгруентное
(жидкое стекло)		плавление
$Na_2O \cdot SiO_2 \cdot 6H_2O$	(-)95	Ступенчатая дегидратация
	(-)170	
	(-)1083	Плавление безводной соли
Гидросульфоалюминат	(-)100-170	Частичная дегидратация
кальция (низкосульфатная	(-)190-250	Потеря большей части
форма)	.,	воды
3CaO·Al ₂ O ₃ ·CaSO ₄ ·12H ₂ O	(-)300-320	Дегидратация
	(-)500	
	(+)800	Кристаллизания аморфной
		безводной фазы

При идентификации термических эффектов большую помощь могут оказать изменение размеров образца до и после завершения термического процесса, плотности, электрической проводимости, магнитных свойств.

Если вещества способны образовывать твердые растворы, возможно смещение термических эффектов в ту или другую сторону, что затрудняет расшифровку термограмм. Наложение эффектов друг на друга также вносит дополнительные трудности при расшифровке термограмм. Совпадающие два эндо- или два экзоэффекта усиливают друг друга, а совпадающие разноименные по знаку эффекты взаимно компенсируются, и суммарный эффект становится

малым по значению или вовсе исчезает.

Если эффекты лишь частично налагаются друг на друга, то на термограмме получаются слизко расположенные друг к другу двойные или даже тройные пики. Идентифицировать их тоже сложно.

1.3. Количественный фазовый анализ

На практических занятиях: по курсу "Основы научных исследований" студент должен изучить метод количественного фазового анализа. Сущность этого метода заключается в том, что площадь термического эффекта на кривой ДТА зависит от количества данного минерала в смеси. Существует несколько разновидностей метода количественного анализа. Наиболее простая из них пропорциональный метод, в соответствии с которым снимают кривую ДТА чистого соединения и вычисляют площадь характерного термоэффекта. При отсутствии чистого соединения берут смесь с точно известным количеством данного соединения. Снимают термограмму смеси и вычисляют площадь термоэффекта исследуемого соединения, после чего осуществляют перерасчет площади термоэффекта на 100% исследуемого соединения в навеске.

Массу искомого соединения в исследуемой смеси вычисляют по формуле, г:

$$\mathbf{m}_i = \mathbf{m}_a \left(\Delta \mathbf{S}_i / \Delta \mathbf{S}_a \right) \tag{1.2}$$

где m_a - масса чистого соединения, г; ΔS_i и ΔS_a - площади термических эффектов данного соединения на термограмме соответственно смеси и чистого соединения, мм² :

Пропорциональный метод применим лишь при условии, что между площадью термического эффекта и количеством искомого соединения существует прямолинейная зависимость. Точность метода ±5%.

Поскольку на площадь (изменение теплоемкости исследуемого вещества при нагревании, чувствительность гальванометров и др.), то в общем случае зависимость между площадью термоэффекта и массой исследуемого соединения в смеси не прямолинейна и выражается уравнением:

 $\Delta \mathbf{S} = Km, \tag{1.3}$

где ΔS - площадь термического эффекта на термограмме, мм²; *m* - масса исследуемого соединения в смеси, г; κ - коэффициент пропорциональности.

Для осуществления количественного термического анализа часто применяют метод калибровочной кривой. Чтобы построить калибровочную кривую, готовят эталонную смесь, в которую вводят искомое соединение в количестве, например 10, 30, 50, 70, 100%. Подвергают термическому анализу эталонные смеси (массы навесок материала во всех случаях должны быть одинаковыми), определяют площадь соответствующих термических эффектов и строят график в координатах площадь эффекта - количество соединения в смеси (рис. 1.5).

Рис. 1.5. Зависимость площади термоэффекта от количества искомого вещества в эталонной смеси

Для количественного определения данного соединения в исследуемой смеси проводят термический анализ в строго одинаковых с эталоном условиях. Измеряют площади соответствующих термоэффектов, пользуясь калибровочной кривой, определяют количество данного соединения в смеси.

1.4. Метод термогравиметрии (ТГ)

Сущность термогравиметрического (термовесового) метода анализа состоит в непрерывной регистрации изменения массы вещества при протекании различных физико-химических процессов в исследуемом веществе под действием температуры. Метод ТГ является важным дополнением к методу ДТА, так как непрерывная регистрация изменения массы вещества позволяет осуществлять более точный количественный анализ физических и химических превращений в веществе при его нагревании.

При нагревании может происходить как уменьшение (выделение газообразных продуктов – CO_2 , SO_2 , паров H_2O и т.п.), так и увеличение массы вещества (окисление, поглощение CO_2 в процессе рекарбонизации и т.п.). Для большинства силикатных материалов увеличение массы при нагревании очень мало. Потери массы, наоборот, значительны, поэтому на их определении и основан данный метод.

Существует несколько методов регистрации потери массы вещества при его термическом анализе.

<u>Метод статической термогравиметрии.</u> Образец нагревается до температуры протекания процесса (до достижения равновесия температуры и давления выделяющегося газа или пара), после чего регистрируется кривая потери массы в изотермических условиях.

<u>Метод динамической термогравиметрии</u> - основан на регистрации потери массы при непрерывном повышении температуры.

<u>Метод изобарной термогравиметрии</u>. Записывают изобарные кривые в среде с определенным постоянным давлением газа или пара. Метод позволяет получать данные для расшифровки комплексных, взаимно перекрывающихся термоэффектов, которые сопровождаются изменением массы.

Обычным статическим или динамическим ТГ методом анализа не всегда

возможно надежно и качественно определять вещество, разложение которого вызывает данное изменение массы. Это обусловлено тем, что в условиях ТГ анализа реакция разложения происходит в некотором температурном интервале, а не при определенной температуре. Кроме того, на результаты ТГ анализа существенно влияют скорость нагревания, плотность образца, его грансостав и т.д. В результате возможно слияние двух следующих друг за другом процессов разложения с образованием одной ступени, что сильно затрудняет анализ кривых и обобщение полученных результатов. Указанные недостатки устраняются в квазиизотермическом термогравиметрическом методе. Суть данного метода состоит в быстром нагревании пробы до начала процесса разложения и изотермической выдержке во время процесса разложения.

1.5. Метод дифференциальных термогравиметрических кривых (ДТГ)

Недостатком ТГ метода является трудность точного определения начала и конца процесса разложения, особенно в тех случаях, когда реакция разложения следуют одна за другой либо перекрывают друг друга.

Кривая ДТГ характеризует скорость изменения массы образца в процессе нагревания.

Недостатком ТГ анализа является то, что по кривым ТГ почти невозможно определить температуру реакции. Кривые ДТА тоже не позволяют точно определить температуру реакции, так как, в зависимости от количества исследуемого материала и его теплопроводности, максимумы на кривой появляются с некоторым опозданием, и температуры эффектов получаются завышенными. Максимумы на кривой ДТГ соответствуют максимальной скорости изменения массы, то есть истинной температура реакции. Поэтому с помощью кривых ДТГ наиболее точно определяют истинные температуры реакции, соответствующие максимальной скорости изменения массы вещества.

Использование кривых ДГГ, кроме того, позволяет разделять налагающиеся друг на друга термические эффекты, которые невозможно разделить с помощью кривых ДТА или ТГ, а также количественно определять долю отдельных эффектов. Следует отметить, что кривые ДГГ регистрируют малейшие изменения массы, почти не наблюдаемые на кривых ТГ,

1.6. Комплексный термический анализ

На практических занятиях по курсу "Основы научных исследовании" студенты получают комплексные термограммы, принадлежащие конкретному минералу или смеси различных минералов. Студенты обязаны расшифровать полученные кривые и описать их. Комплексные термограммы получают на комплексных термических установках. Известны и широко применяются комплексные термические установки, которые позволяют одновременно, а поэтому более глубоко и многосторонне, изучать протекающие в материале при нагревании различные процессы: изменение энергии, массы, объема

выделившегося газа, линейных размеров образца, электрической проводимости и Наиболее совершённая ИЗ них дериватограф комплексная Т.Д. термоаналитическая установка (BHP). Установка позволяет на одном образце производить одновременную регистрацию кривых ДТА (изменение энтальпии), ТГ (изменение массы), ДГГ (скорость изменения массы), Т (изменение температуры исследуемого материала). С помощью дериватографа можно проводить также квазиизотермическое и квазиизобарнотермогравиметрическое изучение материала. Используя термогазотитриметрическую приставку, на дериватографе можно производить термический анализ в воздушной И нейтральной газовой среде с непрерывным выборочным анализом выделяющихся пробы процессе разложения газообразных продуктов ИЗ В реакции. Дилатационная приставка позволяет производить на дериватографе термодилактометрический анализ.

Методика расшифровки дериватограмм

На рис. 1.6 приведена дериватограмма каолинита глуховецкого состоящая из двух, частей - верхней и нижней. В верхней части дериватограммы расположены кривые Т, ДТГ и ДТА. По оси ординат дана шкала температур от 0 до 1000 °C. Через каждые 100 °C параллельно оси абсцисс проведены контурные, через каждые 20 °C - пунктирные линии. Деления температурной шкалы неравномерные. По оси абсцисс дается время проведения анализа. В нижней части дериватограммы расположена суммарная кривая потери массы ТГ. По оси ординат в равномерной шкале дается координата потери массы в миллиграммах. По оси абсцисс можно расположить координату времени, шкала времени равномерная.

Рис.1.6. Дериватограмма каолинита глуховецкого:

I - простая кривая нагревания Т; 2- дифференциальная кривая потери массы ДТГ; 3 - дифференциальная кривая нагревания ДТА; 4 - суммарная кривая потеря массы ТГ

Поскольку кривые ДТГ и ДТА имеют неравномерную шкалу температур, их необходимо перестроить, как изображено на рис. 1.7. По оси абсцисс строят шкалу температур в масштабе, по оси ординат откладывают интенсивность термопиков. На рис. 1.7 переносят наиболее, характерные точки кривой ДТГ (ДТА) - точки перегибов кривой. Для удобства построения в качестве базисной (см. рис. 1.6) ^принимаем линию, соответствующую температуре 800 °C, на рис.

1.7 - линию *АБ*. Для точек *a*, *б*, *в*, *г*, *д* (рис. 1.6) определяют ординату (отклонение от базисной линии) и абсциссу - температуру. Ордината измеряется линейкой, для конкретного случая она соответственно равна: 1, 2, 15, 3, I мм. Для определения температуры через указанные точки проводят прямые, параллельные оси ординат, до пересечения с кривой I (рис. 1.6). Получают точки *a*, *б*, *в*, *г*, *д*, которые соответствуют температурам 100, 500, 590, 685 и 850 °C. По полученным координатам отроят точки *a*, *б*, *в*, *г*, *д* на рис.1.7, соединяют их и получают кривую ДТГ (рио.1.7, кривая 2).

Рис. 1.7. Пример перестройки кривых ДГГ, ДТА и ТГ каолинита глуховецкого: I - кривая ДТА; 2 - кривая ДГГ; 3 - кривая ТГ

Аналогично отроят кривую ДТА настом же графике. В данном случав за базисную линию (рис. 1.6) удобно принять контурную линию, соответствующую температуре 200 °C и линию $B\Gamma$ на рис. 1.7. Выделяют на кривой ДТА (рис. 1.6) характерные точки - *е*, *ж*, *и*, *к*, *л*, *м*, *н*, *n*, *p*. Аналогично описанному определяют для них ординату (отклонение от базисной линии) и абсциссу (температуру). Ординаты характерных точек равны соответственно 2, 3,8, 0, 10, 4, 4, 15, 4 мм; температуры указанных точек соответственно равны 25, 240, 400, 540, 590, 665, 930, 985 и 1000 °C, Строят данные точки на рис.1.7, соединяют их и получают кривую ДТА (рис. 1.7, кривая I),

Кривую ТГ необходимо построить в координатах потеря массы в процентах - температура в градусах Цельсия. Ее удобно расположить на том же рисунке, использовав уже существующую ось абсцисс. Ось ординат проводят вниз от оси абсцисс (кривую ТГ можно построить и на отдельном рисунке).

Как видно из рис. 1.6, нижняя часть дериватограммы по оси ординат

разделена на 200 малых делений. Масштаб этой шкалы указан в верхней части дериватограммы: ТГ 200. Это означает, что вся шкала ординат имеет масштаб 200 мг. Следовательно, цена одного малого деления составляет І мг. Масса исходной навески материала также указывается в верхней части дериватограммы и составляет 0,487 г. По кривой ТГ (рис. 1.6) определяют суммарные потери массы в миллиграммах (они составляют 73 мг). Из простого соотношения рассчитывают суммарные потери массы

0,073*100/0,487=15%

Таким образом, можно выбрать требуемый масштаб потерь массы на оси ординат.

Выделяют наиболее характерные точки на кривой ТГ, (рис. 1.6) – *о*, *с*, *m*, *y*, ϕ , *x*. Для каждой из указанных точек определяют потери массы в процентах и температуру. При определении потерь массы в процентах удобно установить коэффициент перевода потерь массы из миллиграммов в проценты (определить в процентах долю потерь, равную-І мг). Для этого достаточно разделить общие потери массы в процентах 15 : 73 = 0,2% (І мг потерь составляет 0,2%).

В дальнейшем определяют потери в миллиграммах для каждой точки и умножают их на 0,2%. Для точек *с*, *m*, *y*, *ф*, *x* получим потери массы: 8 мг*0,2% = =1,6%; 35 мг*0,2% = 7% 60 мг*0,2% = 12%; 69 мг*0,2% = 13,8%; 72 мг*0,2% = =14,4%. Температуры в характерных точках определяют аналогично изложенному. На рис. 1.6 это показано на примере точки *C*. Из точки *C* проводим прямую, параллельную оси ординат, до пересечения с кривой I. Температуры в указанных точках равны соответственно 20, 470, 570, 620, 700 и 820 °C. Данные точки строят на рис. 1.7, соединяют и получают кривую ТГ (см. рис. 1.7, кривая 3).

Исследование кривой ТГ завершают сравнением практических потерь массы исследуемого вещества с теоретическими. Теоретические потери массы рассчитывают исходя из реакции дегидратации каолинита:

Al₂O₃ ·2SiO₂·2H₂0= Al₂O₃ ·2SiO₂+2H₂0↑ (относительные молекулярные: массы каолинита - 248, двух молекул воды -36). Следовательно, теоретические потери составляют:

36*100/248=15%

Если практические потери не соответствуют теоретическим, необходимо объяснить такое расхождение.

Расшифровку неизвестного вещества осуществляют с помощью уже известных, ранее исследованных и описанных в литературе данных температур превращений для индивидуальных веществ. С этой целью по кривым ДТА и ДТГ устанавливают температурные интервалы протекания физико-химических процессов и записывают эти значения в протоколы лабораторных работ. Полученные данные сравнивают с литературными. Термические эффекты ряда силикатных материалов приведены в табл. 1.1.

В рассматриваемом примере на кривой ДТА наблюдаем два эффекта: эндои экзотермический. Определяем температурные интервалы этих термоэффектов. Поскольку эндоэффект сопровождается потерей массы (см. рис. 1.6, кривая 2), его температурный интервал определяем по кривой ДТГ. Начало термоэффекта характеризуется точкой δ , конец - точкой 2, максимальная скорость протекания данного процесса - точкой ϵ . Температуры в этих точках равны соответственно 500, 685 и 590 °C. Процесс, характеризующийся экзопиком, не сопровождается потерей массы, поэтому его температурный интервал определяем по кривой ДТА. Начало экзопика характеризуется точкой H - 930 °C, конец - точкой P - 1000 °C, максимальная скорость протекания - точкой n - 985 °C.

Зная, что исследуемая термограмма принадлежит каолиниту, легко находим в табл. 1.1 расшифровку тех процессов, которые протекают при его нагревании. Эндоэффект в интервале температур 500...685 °C обусловлен дегидратацией каолинита с потерей воды, выделяющейся при разложении каолинита. Экзоэффект в интервале температур 930... 1000 °C характеризует кристаллизацию аморфных продуктов и образование муллита.

В некоторых случаях о помощью термического анализа не удается надежно установить природу термического эффекта и целесообразно воспользоваться дополнительно другими методами анализа - рентгенофазовым, электронной микроскопией, спектроскопией и др. При этом пробы исследуемого вещества предварительно нагревают до температуры начала протекания процесса, максимальной скорости протекания процесса, окончания процесса, после чего охлаждают и исследуют указанными методами. Более совершенным является проведение рентгеновского анализа в процессе нагревания образца, без его охлаждения. Существенную помощь при идентификации термических эффектов оказывает определение изменения линейных размеров образцов, их плотности, электрической проводимости, магнитных свойств в результате протекания данной реакции.

1.7. Перечень вопросов для коллоквиума

- 1. Виды термического анализа. Краткая характеристика каждого из них.
- 2. Виды физических и химических процессов, сопровождающихся эндо- и экзотермическими эффектами. Характеристики эффектов.
- 3. Характеристики термических эффектов и методы их определения.
- 4. Способы подготовки образцов и их влияние на результаты дифференциально-термического анализа.
- 5. Выбор эталона, требования к нему.
- 6. Градуировка термопар при проведении ДТА.
- 7. Сущность и разновидности метода термогравиметрии (ТГ).
- 8. Дифференциальная термогравиметрия (ДТТ),
- 9. Расчет энергии активации по кривой ДТА
- 10. Расчет энергии активации по кривой ТГ.
- 11. Расчет энергии активации по кривой ДТГ.
- 12. Особенности изготовления держателей образцов (блоков и тиглей) для ДТА. Их влияние на характеристики термических эффектов.
- 13. Характеристика нагревательных печей и охлаждающих установок, применяемых в ДТА. Среда и давление в объеме печи.
- 14. Термопары и терморегуляторы, применяемые в ДТА.

- 15. Характеристика регистрирующих приборов, применяемых в ДТА. Методы регистрации физико-химических процессов.
- 16. Влияние массы навески и скорости нагревания образцов на результаты ДТА.
- 17. Влияние размеров частиц, степени уплотнения и закристаллизованнссти частиц на характер кривых ДТА.
- 18. Влияние способа установки термопар и вида держателей образцов на результаты ДТА.
- 19. Виды нагревательных печей (и охлаждающих установок) и среда в печи при проведении ДТА.

1.8. Список литературы

- 1. Горшков В.С., Тимашев В.В., Савельев В.Г. Методы физикохимического анализа вяжущих веществ. - М.: Высш. шк., 1981. - 335 с.
- 2. Рамачандран В.С. Применение дифференциального термического анализа в химии цементов. М.: Стройиздат, 1977. 408 с.

2. Рентгеноструктурный анализ

Из специальной литературы студенты знают, что в настоящее время рентгеноструктурный анализ - один из наиболее универсальных и совершенных методов исследования силикатных материалов, позволяющий производить качественный и количественный фазовый анализ сложных по своему составу решетки материалов, также определять строение кристаллической a индивидуальных соединений, измерять внутренние напряжения и искажения решеток, преимущественную кристаллических ориентировку И размеры Рентгенофазовый кристаллов. метод анализа весьма эффективен при исследовании твердых растворов, полиморфных превращений и процессов разложения в веществах.

Рентгеновские лучи занимают спектральную область между гамма - и ультрафиолетовым излучением. Длины волн рентгеновского излучения сравнимы с межатомными расстояниями в кристаллических веществах, поэтому кристаллическая решетка исследуемого материала является для рентгеновских лучей своеобразной дифракционной решеткой.

Природа рентгеновских лучей та же, что и лучей видимого света, однако длины волн рентгеновского излучения на 3 порядка меньше:

- для мягких лучей $\lambda = 0,2-1$ нм;

- для жестких лучей $\lambda = 0,2-10^{-5}$ нм.

Длины волн рентгеновских лучей, применяемых в электронных рентгеновских трубках, составляют 0,006...0,6 нм.

Рентгеновское излучение ("белый" рентгеновский свет) возникает в электронных рентгеновских трубках при столкновении потока быстрых электронов с поверхностью металлического анода. Источником пучка электронов служит катод, выполненный в виде спирали из вольфрамовой проволоки. Электроны под действием термоэлектронной эмиссии покидают поверхность

катода, ускоряются в электрическом поле высокой напряженности (U в 10 - 100 кВ), фокусируются электростатической системой в тонкий луч и устремляются к аноду. Для обеспечения беспрепятственного движения электронов в трубке поддерживается глубокий вакуум порядка 10⁻⁴-10⁻⁶ Па. Сталкиваясь с поверхностью анода, электроны тормозятся и передают часть своей энергии поверхностным атомам анода.

Поток рентгеновских лучей ("белый" рентгеновский свет), образующийся в результате торможения быстро движущихся электронов поверхностью анода содержит излучения с различными длинами волн, включая характеристическое излучение волнами определенной длины. Свойства образующихся С рентгеновских лучей зависят от кинетической энергии пучка электронов, бомбардирующих поверхность анода. "Белый" рентгеновский свет при любом материале анода образует сплошной спектр (рис. 2.1) и вызывает сплошное потемнение фотопленки. Характеристическое излучение определяется строением кристаллической решетки материала анода и приложенным напряжением. Часть энергии пучка быстро движущихся электронов передается при торможении поверхностным атомам анода. Поглощая эту энергию, электроны поверхностных атомов "перескакивают" на более удаленные от ядер орбитали. При их возвращении на исходные орбитали ранее поглощенная энергия выделяется в виде монохроматического* излучения, имеющего линейчатый спектр с отдельными линиями (рис. 2.2), которые характеризуют переход электронов с одной орбитали на другую. Получаемые линии являются строго определенными для данного материала анода и создают его характеристический спектр. Характеристические линии образуют серии К, L, M и т.д. в зависимости от орбиталей электронов. Внутри серий линии обозначают: К_{α1}, К_{α2}, К_β и т.д.. В практике рентгеноструктурного анализа обычно используют К-серию**, в рентгеноспектральном - иногда и L - серию. Как правило, пользуются дуплетом линий К_α, а остальные отфильтровывают.

Для получения монохроматического рентгеновского излучения материал анода выполняют из *Mo*, *Rh*, *Fe*, *Cu*, *Cr*, *Ni* или *Co*, а для получения "белого" рентгеновского света - из Pt, W или Ir.

Рис. 2.1. Сплошной спектр

Рис. 2,2. Характеристический спектр

^{*} Монохроматическое излучение - электромагнитное излучение (электромагнитная волна) одной определенной частоты, характеризующее материал анода.

^{**} Линию Ка₁ получают при переходе электронов с L₁ на К- орбиталь (интенсивность линии J =100%), линию Ка₂ - при переходе с L₂ на К- орбиталь (J =50%), а линию К_β - при переходе с L₃ на К- орбиталь (J =15%),.

В табл. 2.1 приведены К - серии монохроматического излучения для некоторых наиболее часто применяемых в рентгеновских аппаратах материалов анода.

Таблица 2.1

Материал	Длинна вол	ны, нм (в знам	Элементы,			
анода (в	интенсивное	сть пиков		поглощающие линии (в		
скооках				скобках № порядковый)		
норядковыи номер)	$K_{\alpha 1}$	$K_{\alpha 2}$	K_{β}	K_{lpha}	K_{eta}	
1	2	3	4	5	6	
Cr (24)	0,22935/56	0,22396/21	0,20847/16	Ti, Sc, Co	V (23)	
Fe (26)	0,19399/45	0,19359/100	0,17565/18	Cr, V, Ti	Mn (25)	
Co (27)	0,17927/57	0,17809/100	0,16207/17	Mn, Cr, V	Fe (26)	
Cu (29)	0,15443/59	0,15405/100	0,13922/16	Co, Fe, Mn	Ni (28)	
Mo (42)	0,07135/40	0,07096/100	0,06523/17	Sr, Ru	Nb (41)	

К-серии монохроматического излучения для различных материалов анода

Как видно из табл. 2.1, для каждого анода существуют элементы, поглощающие излучение. Некоторые элементы поглощают α - излучение, другие - β -излучение. Как правило, β -излучение поглощают элементы, порядковый номер которое в периодической таблице элементов на единицу меньше порядкового номера материала анода. Поэтому для отфильтровывания β - излучения используют фильтры из этих элементов (см. табл. 2.1, графа 6).

Анод выбирают таким, чтобы минерал, подвергающийся анализу, не излучал *а*-излучение, характерное для анода. Для анализа силикатных материалов чаще всего применяют медный анод, дающий рентгеновское излучение со средней длиной волны. Фильтром служит никель.

2.1. Основное уравнение рентгенофазового анализа

На свойстве рентгеновских лучей дифрагировать на кристаллической решетке исследуемого материала основан рентгенофазовый анализ. Вычисление межплоскостных расстояний в кристаллической решетке различных соединений производится по формуле Вульфа-Брэгга. Она выведена из предположения, что собой сумму кристалл представляет параллельно расположенных И равноудаленных одна от другой плоскостей, в пределах которых располагаются все атомы вещества. Такого рода плоскости (параллельные между собой) проходят внутри кристалла в самых различных направлениях и в каждом из этих кристалла изменяются (свойства анизотропии). направлений свойства B частности, изменяются и расстояния между параллельными плоскостями (межплоскостные расстояния).

Пучок монохроматических рентгеновских лучей, имеющих длину волны λ , падая на ряд параллельных атомных плоскостей под углом θ , отражается от них под тем же углом (рис. 2.3). Лучи, отраженные от этого ряда плоскостей, будут находиться в одной фазе и усиливать друг друга в том случае, если разность их хода после отражения теми или иными по порядку плоскостями будет равна

целому числу волн λn . Разность же хода лучей, отразившихся от двух соседних плоскостей, равна $2\alpha sin\theta$.

Рис. 2.3. Схема дифракции рентгеновских лучей параллельными плоскостями кристаллической решетки: І - падающий пучок лучей; 2 - отраженный пучок лучей; 3 - атомные плоскости; 4 - межплоскостное расстояние; 5 - разность хода, лучей

Следовательно, интерференционный пучок лучей возникает лишь в том случае, когда соблюдается уравнение дифракции:

$$n\lambda = 2d \sin\theta, \tag{2.1}$$

где n - порядок отражения (целое положительное число), n-= 1,2,...; λ - длина волны рентгеновских лучей, нм; d - межплоскостное расстояние, нм; θ - угол между направлением пучка падающих рентгеновских лучей и отражающими плоскостями, град.

Лучи, отраженные во всех других направлениях и под другими углами, взаимно погашаются. Таким образом, направление отраженных лучей определяется расстоянием между атомными плоскостями решетки *d* и их ориентацией, т.е. строением кристалла.

Из уравнения (2.1) можно вычислить межплоскостное расстояние;

$$d = n\lambda/(2\sin\theta). \tag{2.2}$$

Зная *d*, можно найти параметры кристаллической решетки: *a*, *b*, *c*, *d* и *j*.

2.2. Основные методы рентгеноструктурного анализа

В зависимости от целей рентгеновского анализа и вида исследуемого материала применяют различные методы исследования. Основными из них являются методы Лауэ (метод неподвижного монокристалла), вращения монокристалла и Дебая - Шерера (для поликристаллических материалов). В первом методе используют полихроматическое рентгеновское излучение, во втором и третьем - монохроматическое.

2.2.1. Метод Лауэ (метод неподвижного монокристалла)

Исследованию подвергают хорошо оформленные и чистые монокристаллы вещества. Пучок полихроматического рентгеновского излучения ("белого"рентгеновского света) падает на монокристалл, дифрагирует на его кристаллографических плоскостях и, попадая на неподвижную фотопленку, образует на ней картину строения вещества в виде системы засвеченных точек лауэграммы. По интенсивности засвеченных точек судят о распределении атомов в элементарной ячейке кристалла, а по симметрии расположения точек на фотопленке - о внутренней симметрии кристалла. Лауэграмма позволяет приближенно вычислять и межплоскостные расстояния.

2.2.2. Метод вращения монокристалла

Монокристалл размером 0.2...1.0 MM, установленный в камере вращается рентгеновского аппарата, перпендикулярной вокруг оси, монохроматическому рентгеновскому лучу. При этом определенное кристаллографическое направление в кристалле должно совпадать с осью вращения. Отраженный кристаллографическими плоскостями рентгеновский луч фиксируется на фотопленке. Вместо полного вращения монокристалла можно производить неполное вращение или колебание в пределах угла 5...15°.

2.2.3. Метод порошка (метод Дебая - Шерера)

Метод получил широкое распространение при исследовании хорошо кристаллизованных силикатных материалов. Исследования проводят с применением монохроматического рентгеновского излучения. Сущность метода в следующем. Образец из тонко молотого порошка в состоит виле цилиндрического столбика (диаметром 0,5...0,8 мм, высотой 5...6 мм) помещают в рентгеновскую камеру и вращают вокруг оси, совпадающей с направлением рентгеновского луча. У тонко раздробленного кристалла кристаллографические плоскости равномерно ориентируются в пространстве. Если идентичные плоскости непрерывно чередуются в пространстве, то рентгеновский луч отражается от них, как от кристаллографических плоскостей монокристалла.

Пучок монохроматических лучей входит в камеру, проходит сквозь образец и выходит через специальное отверстие в фотопленке в ловушку на конце которой имеется экран, светящийся под давлением рентгеновских лучей. При повороте образца на 360° отраженный рентгеновский луч опишет в пространстве конус, и на фотопластинке - круг. Регистрацию отраженного рентгеновского луча осуществляют на узкой полоске фотопленки (шириной 2...5 см), свернутой в цилиндр (рис. 2.4). В результате пересечения конусов, образуемых в пространстве отраженными лучами, с фотопленкой на последней экспонируются линии в форме дуг (дебаеграмма), рис. 2.4.

Рис. 2.4. Схема регистрации отраженного рентгеновского луча и получения дебаеграммы

2.3. Приготовление препаратов для рентгеноструктурного анализа по методу порошка

Материал тщательно измельчают в агатовой ступке до частиц размером меньше 60...10 мкм до полного прохождения через сито № 0056 с 10095 отв./см². Навеску массой 0,1...0,2 г измельченного материала помещают на стекло, смачивают, 2-3 каплями рентгеноаморфной связки - раствора целлулоида в смеси с ацетоном и уксусноэтиловым эфиром (цапонлака) и перемешивают. Полученную пластичную массу помещают в стеклянный капилляр с внутренним диаметром 0,4...0,7 мм на высоту 7...10 мм, проволокой слегка уплотняют массу в капилляре, а затем выдавливают из него на высоту 5...8 мм. Образец подсыхает (до 1ч). Если при этом он искривляется, его бракуют. Готовый образец вместе с капилляром укрепляют с помощью воска в держателе образцов рентгеновской камеры.

2.4. Современные методы регистрации дифрагированных рентгеновских лучей

В настоящее время существуют другие методы регистрации отраженных рентгеновских лучей - ионизационные, основанные на свойстве рентгеновских лучей ионизировать газы. В качестве счетчиков применяются счетчики Гейгера -Мюллера. Зарегистрированные ими кванты передаются на самописец. При ионизационном методе регистрации луч, вышедший из рентгеновской трубки, попадает на вращающийся с определенной скоростью образец. Счетчик, регистрирующий излучение, вращается вместе с ним. Возбужденные в счетчике импульсы тока преобразуются в импульсы напряжений и попадают на электронный самопишущий потенциометр. Максимумы кривых соответствуют межплоскостным расстояниям, определенным используются также сцинтилляционные счетчики. Их применение основано на том, что рентгеновские лучи вызывают вспышки света в некоторых кристаллах, например, в кристаллах фосфора.

При ионизационном методе регистрации рентгеновских лучей рентгенограммы имеют вид, приведенный на рис. 2.5.

2.5. Применение рентгеновского анализа для исследования силикатных материалов

Кристаллы каждого индивидуального соединения дают специфическую, только для него характерную рентгенограмму с определенными размерами межплоскостных расстояний и интенсивностью линий. Это обстоятельство является основой рентгенофазового анализа материалов. В настоящее время получены эталонные рентгенограммы большинства минералов и соединений, по которым составлены таблицы межплоскостных расстояний.

Качественный фазовый анализ проводится путем сравнения межплоскостных расстояний рентгенограмм исследуемых веществ и табличных значений межплоскостных расстояний известных .веществ. Идентификация фазы считается надежной, если на рентгенограмме обнаружено не менее трех наиболее интенсивных линий данной фазы. При расшифровке рентгенограмм смесей минералов возможно подавление и совпадение ряда отражений. С увеличенной доли какого-либо минерала в смеси количество его аналитических линий, их интенсивность возрастают. Минимальное количество фаз, которое может быть определено рентгеновским методом, зависит от многих факторов: размера кристаллов, фона рентгена, степени дефектности кристаллов. С уменьшением 10-5 кристаллов (менее см). размеров с увеличением дефектности кристаллической решетки чувствительность метода снижается.

При расшифровке рентгенограмм экспериментальные данные (углы отражения, межплоскостные расстояния и интенсивности линий) заносятся в протокол в виде табл. 2.2.

В качестве примера изучена дифрактограмма некоторого неизвестного минерала (рис. 2.5). Расшифровка дифрактограммы заключается в определении углов отражения для каждого из максимумов (для удобства максимумы на дафрактограмме пронумерованы). Точность измерения должна быть не менее 0,1°.

При определении углов отражения необходимо помнить, что по оси абсцисс на дифрактограммах отложены двойные углы отражения 2 θ , поэтому полученные при измерении значения углов следует разделить на 2 после чего результаты измерения записать в графу 2 табл. 2.2.

Межплоскостные расстояния определяют по формуле (2.2) или из табл. 2.3. Результаты определения межплоскостных расстояний заносят в графу 3 табл. 2.2.

Оценка интенсивности максимумов, полученных на дифрактограммах, может проводиться на глаз. Существует несколько шкал интенсивностей. Одна из наиболее простых - пятибалльная шкала:

- о.с. - очень сильная;

- с. сильная;
- ср. средняя;
- сл. слабая;
- о.сл. очень слабая.

Другой, несколько более сложной, но имеющей более широкий диапазон изменения, является десятибалльная шкала. По этой шкале балл 10 присваивается наиболее яркой линии на данной рентгенограмме. Оценка интенсивности остальных линий производится сравнением их с наиболее интенсивной.

Таблица 2.2

Форма записи при рентгенофазовом анализе веществ									
N⁰		Опытные дани	ные,	Табл	ичные данные				
пика	heta град	<i>d</i> , нм	J	<i>d</i> , нм	J				
	2	3	4	5	6				
1.	13,72	0,3249	10	0,324	0.C.				
2.	18,08	0,2485	4,4	0,249	0.П.				
3.	20,67	0,2181	1,7	0,219	С,				
4.	22,11	0,2048	0,4	0,205	ОЛ.				
5.	27,22	0,1685	4,3	0,169	0.C.				
6.	28,39	0,1621	1,2	0,162	сл.				
7.	31,44	0,1478	0,4	0,148	сл.				
8	32,11	0,1450	0,4	0,144	сл.				
9.	34,50	0,1361	1,2	_	0,136-анатаз				
10.	34,91	0,1347	0,6	_					
~ .									

3	3	

Θ	d,нм	Θ	d,нм	Θ	d,нм	Θ	d,нм	Θ	d,нм	Θ	d,нм
5,0	0,8845	6,0	0,7375	7,0	0,63255	8,0	0,55391	9,0	0,49279	10,0	0,44394
5,1	0,8672	6,1	0,7254	7,1	0,62369	8,1	0,54711	9,1	0,48742	10,1	0,43959
5,2	0,8506	6,2	0,7138	7,2	0,61507	8,2	0,54049	9,2	0,48216	10,2	0,43532
5,3	0,8346	6,3	0,7025	7,3	0,60669	8,3	0,53402	9,3	0,47702	10,3	0,43114
5,4	0,8192	6,4	0,6916	7,4	0,59854	8,4	0,52771	9.4	0,47199	10,4	0,42704
5.5	0.8043	6.5	0.6810	7.5	0.59060	8.5	0.52154	9.5	0.46706	10.5	0.42302
5.6	0.7900	6.6	0.6707	7.6	0.58288	8.6	0.51552	9.6	0.46225	10.6	0.41907
5.7	0.7762	6.7	0.6607	7.7	0.57535	8.7	0.50964	9.7	0.45753	10.7	0.41520
5.8	0.7628	6.8	0.6511	7.8	0.56802	8.8	0.50390	9.8	0.45291	10.8	0.41140
5.9	0.7499	6.9	0.6417	7.9	0.56087	8.9	0.49828	9.9	0.44838	10.9	0.40767
110	0 40401	12.0	0 37078	13.0	0 34269	14.0	0.31865	15.0	0.29785	16.0	0.27968
111	0 40042	12,0	0.36776	13,0	0 34012	14.1	0 31644	15,0	0 29592	16,0	0 27798
11.2	0 39689	12.2	0 36479	13.2	0 33759	14.2	0 31425	15.2	0 29402	16.2	0.27631
11.3	0 39342	12.3	0 36187	13,2	0 33510	14.3	0.31210	15.3	0 29214	16.3	0 27466
11.4	0 39001	12,3	0.35900	13,5	0 33264	14.4	0 30998	15,3	0 29029	16,5	0.27303
11.5	0 38667	12,1	0 35617	13,1	0 33022	14 5	0 30789	15 5	0.28847	16,1	0 27143
11,0	0 38338	12,5	0 35339	13,5	0 32784	14.6	0.30582	15,5	0.28666	16,5	0 26984
11,0	0.38015	12,0	0,35065	13,0	0 32549	14.7	0.30379	15,0	0 28488	16,0	0.26901
11,7	0,30013	12,7	0.34796	13,7	0 32318	14,7	0.30178	15,7	0.28312	16.8	0,26671
11,0	0,37385	12,0	0.34530	13,0	0.32090	14,0	0,29980	15,0	0.28139	16.9	0,26518
17.0	0,26367	12,5	0.24947	19,9	0,32678	$\frac{14,9}{20.0}$	0.22539	21.0	0.21511	22.0	0.205787
17,0	0,20307	18,0	0,24947	19,0	0,23559	20,0	0,22337	21,0 21.1	0,21311	22,0	0,203787
17,1	0,20217	18.2	0.24613	10.2	0,23337	20,1 20.2	0,22432	21,1 21.2	0,21414 0.21317	22,1 22,1	0,204023
17.2	0,20007	18.2	0,24002	10.3	0,23441	20,2	0,22323	21,2 21.3	0,21317	22,2	0,204023
17,3 17/	0,23923	18,5	0,24331	19,5	0,23324	20,3	0,22220	21,3 21/4	0,21222	22,3 22.4	0,203137
17,4	0,25775	18,4	0,24422	10,4	0,23200	20,4	0,22110	21,4 21.5	0,21127	22,4	0,202270
17,5	0,25050	18,5	0,24275	10,5	0,23094	20,5	0,22012	21,5 21.6	0,21034	22,5	0,201443
17,0	0,25355	18,0	0,24109	19,0	0,22981	20,0	0,21910	21,0 21.7	0,20941	22,0	0,200398
17.8	0,25555	18.8	0,24044	19,7	0,2809	20,7	0,21309	21,7 21.8	0,20349	22,7	0,199701
17,0	0,25210	18.0	0,23921	19,0	0,22758	20,8	0,21709	21,0 21.0	0,20758	22,0	0,198951
$\frac{17,9}{23.0}$	0,23081	24.0	0,23733	$\frac{19,9}{25.0}$	0,22048	$\frac{20,9}{26.0}$	0,21009	$\frac{21,9}{27.0}$	0,20008	22,9	0.164204
23,0 23.1	0,197294	24,0	0,189331	25,0 25.1	0,182408	20,0	0,175055	27,0	0,109803	20,0	0,104204
23,1	0,190407	24,1	0,188791	25,1	0,181728	20,1	0,173220	27,1	0,109224	20,1	0,103007
23,2	0,193000	24,2	0,186037	25,2	0,181034	20,2	0,174003	27,2	0,108049	20,2	0,103134
23,3	0,194695	24,5	0,187330	25,5 25,4	0,180383	20,5	0,173966	27,5	0,100070	20,5	0,102003
23,4	0,194107	24,4	0,180009	25,4	0,179722	20,4	0,173370	27,4	0,10/312	20,4	0,102080
23,3	0,195527	24,3	0,103094	23,3 25.6	0,179004	20,5	0,172166	20,3	0,100930	20,3	0,101338
23,0	0,192554	24,0	0,185185	25,0 25.7	0,177764	20,0	0,171560	28,0	0,100393	28,0 28.7	0,101041
23,1	0,191/89	24,7	0,184482	25,1	0,177122	20,7	0,171509	28,7	0,105839	28,7	0,160527
23,0	0,191029	24,8	0,185785	23,8 25.0	0,17/122	20,8	0,170973	20,0	0,163290	20,0	0,100017
23,9	0,190277	24,9	0,185094	23,9	0,170483	20,9	0,170387	28,9	0,104743	28,9	0,139311
29,0	0,159009	30,0	0,154178	31,0 21,1	0,149676	32,0	0,145473	33,0	0,141541	34,0 24,1	0,137858
29,1	0,158510	30,1 20,2	0,153714	31,1	0,149243	32,1	0,145068	33,1	0,141102	34,1 24.2	0,137502
29,2	0,158015	30,2	0,153252	31,2	0,148813	32,2	0,144666	33,2	0,140/86	34,2 24,2	0,13/149
29,3	0,157525	30,3 20,4	0,152794	31,3	0,148385	32,3 22.4	0,144200	33,3 22 4	0,140411	54,5 24,4	0,130/98
29,4	0,157055	30,4 20,5	0,152540	51,4	0,147901	32,4 22.5	0,143809	33,4 22.5	0,140039	54,4 24,5	0,130449
29,5	0,156550	30,5 20,6	0,151888	31,5 21.6	0,14/539	32,5	0,143475	33,5	0,139670	34,5 24.6	0,133102
29,0	0,150009	30,0 20.7	0,151440	31,0	0,14/120	32,0 22.7	0,143083	33,0 22 7	0,139303	34,0 24.7	0,135/5/
29,7	0,155591	30,7 20,9	0,130994	$\frac{51,7}{21,0}$	0,146704	32,7	0,142094	22,1	0,138938	54,7 24.9	0,133413
29,8	0,155117	30,8 20.0	0,150552	31,8	0,146291	32,8 22.0	0,142307	33,8 22.0	0,138570	54,8 24.0	0,135075
29,9	0,154646	30,9	0,150113	31,9	0,145881	32,9	0,141923	33,9	0,138215	34,9	0,134/3/
33,0 25 1	0,134401	30,0 26 1	0,131152	37,U	0,128094	38,0	0,125215	39,0 20.1	0,122496	40,0 40,1	0,119929
33,1 25 2	0,134067	30,1 26.2	0,130838	3/,1 27.2	0,127/98	58,1	0,124934	39,1 20.2	0,122252	40,1	0,119680
33,2 25 2	0,133/35	30,2 26,2	0,130525	37,2	0,127504	38,2 29,2	0,12465/	39,2	0,1219/1	40,2	0,119433
33,3	0,133405	30,3 26,4	0,130215	51,5	0,12/212	58,5 20.4	0,124381	39,3	0,121/10	40,5	0,11918/
33,4	0,133077	30,4 26,5	0,129907	3/,4 27 5	0,126921	38,4 29.7	0,124107	39,4 20.7	0,121452	40,4	0,118942
33,5 25 -	0,132/51	30,3 26,5	0,129600	51,5	0,126633	38,5	0,123835	39,5 20.6	0,121194	40,5	0,118699
33,6	0,132427	30,0 26 7	0,129295	37,6	0,126345	38,6	0,123564	<i>3</i> 9,6	0,120938	40,6	0,118457
35,7	0,132105	30,/ 26.0	0,128992	5/,7	0,126060	38,7	0,123295	39,7	0,120684	40,7	0,118217
35,8	0,131786	36,8 26,0	0,128691	57,8	0,125776	38,8	0,123027	<i>39,8</i>	0,120431	40,8	0,117978
55,9	0,131468	30,9	0,128392	51,9	0,125494	3 48,9	0,122760	39,9	0,120179	40,9	0,11//40

Им также присваивается соответствующая цифра, означающая интенсивность. Иногда интенсивность оценивается по стобальной шкале в процентах. При атом интенсивность наиболее яркой линии принимают равной 100%. Интенсивность остальных линий в процентах определяют путем сравнения с наиболее интенсивной. Вычисленные по 10-балльной шкале интенсивности максимумов дифрактограммы исследуемого вещества заносят в графу 4 табл. 2.2.

Полученные значения межплоскостных расстояний и их интенсивностей сравнивают с табличными данными. В табл. 2.4 приведены эталонные значения *d* и I для некоторых силикатных материалов. Идентификация минерала считается оконченной в том случае, если совпало не менее трех межплоскостных расстояний для наиболее ярких линий.

Студент обязан вписать вторую часть табл.2.2 (графы 5 и 6) межплоскостные расстояния и интенсивности линий эталонного минерала совпавшие с линиями исследуемого вещества.

Как следует из табл. 2.2, в исследуемом минерале четко прослеживаются линии-рутила (d = 0,3249; 0,2485; 0,2181; 0,2046; 0,1685; 0,1621; 0,1478 нм). Следовательно, можно считать установленным, что рентгенограмма на рис. 2.5 принадлежит минералу рутилу. Линия d=0,1361 принадлежит анатазу.

2.6. Перечень вопросов для самоподготовки

- 1. Задачи, решаемые рентгеновским методом анализа.
- 2. Природа рентгеновского излучения.
- 3. Белый рентгеновский свет и характеристическое излучение.
- 4. Методы отфильтровывания отдельных линий характеристического рентгеновского излучения.
- 5. Основное уравнение рентгенофазового анализа.
- 6. Основные методы рентгеноструктурного анализа.
- 7. Метод неподвижного монокристалла.
- 8. Метод вращения монокристалла.
- 9. Метод Дебая Шерера (метод порошка).
- 10. Методы регистрации дифрагированных кристаллической решеткой отраженных рентгеновские лучей.
- 11. Подготовка препаратов для рентгенофазового анализа по методу порошка.
- 12. Сущность рентгенофазового метода анализа.
- 13. Методы расшифровки дифрактограмм.

Таблица 2.4

d,нм	I	d,нм	Я	d,нм	I	d,нм	Я	d,нм	I
α -Al ₂ O ₃		0.1079	2	0.0630	2	0.285	8	0.1420	4
0.3435	3	0.1043	3	0.0616	2	0.246	2	0.1395	4
0.2543	6	0.0995	5	0,0600	1	0.232	6	0.1360	1
0,2374	4	0.0993	2	0.0578	1	0.226	1	0.318	5
0,2081	9	0,0904	4	0,0564	1	0,220	6	0,1296	3
0,1738	5	0,0854	3	γ- Al	l_2O_3	0,208	3	0,1275	5
0,1599	10	0,0843	2	0,2720	3	0,199	3	0,1215	3
0,1513	5	0,0828	3	0,2595	2	0,193	2	0,1197	1
0,1401	6	0,0806	2	0,2445	4	0,186	7	0,1163	5
0,1374	7	0,0796	3	0,2290	3	0,174	6	0,1003	6
0,1238	4	0,0761	2	0,1988	5	0,164	8	CaSO ₄ .	0,5H ₂ O
0,1190	2	0,0719	2	0,1389	10	0,159	2	0,345	C.
0,1146	3	0,0686	2	CaSo	O_4	0,156	3	0,233	сл.
0,1125	2	0,0662	2	0,389	1	0,152	4	0,212	C.
0,1098	2	0,0637	2	0,349	10	0,1487	4	0,189	cp.
d,нм	J	d,нм	J	d,нм	J	d,нм	ſ	d,нм	J
0,184	0.C.	0,311	25	0,380	3	0,420	48	0,1774	7
0,172	сл.	0,263	100	0,363	2	0,404	32	0,1728	7
0,169	c.	0,193	50	0,337	2	0,356	100	0,1686	3
0,165	cp.	0,179	40	0,320	0	0,256	48	0,1595	6
0,147	сл.	0,169	30	0,315	2	0,250	48	0,1568	6
0,129	cp.	0,155	2	0,2948	4	0,234	80	0,1534	6
0,126	cp.	0,1485	20	0,2832	4	0,199	33	0,1493	6
CaSO ₄ ·2	H ₂ O	0,1450	20	0,2648	2	Op	токлаз	0,1454 8	
0,756	0.C.	0,1315	16	0,2509	6	$K_2O \cdot Al_2O$) ₃ *	0,1423	6
0,427	c.	0,1145	15	0,2135	6	*6	SiO ₂	0,1373	7
0,379	cp.	0,1063	10	0,2097	3	0,644	6	Микро	клин
0,3059	c.	Py	/ТИЛ	0,2021	3	0,586	2	0,599	сл.
0,2867	cp.	0,324	0.C.	0,1926	3	0,425	3	0,417	cp.
0,2786	сл.	0,249	сл.	0,1877	2	0,402	9	0,377	cp.
0,2679	cp.	0,229	сл.	0,1836	5	0,380	8	0,364	cp.
0,2591	сл.	0,219	c.	0,1797	4	0,3493	2	0,345	cp.

r	1	1	r						
0,2495	сл.	0,205	сл.	0,1762	5	0,3331	7	0,322	0.C.
0,2450	сл.	0,169	0.C.	0,1714	2	0,3183	10	0,302	cp.
0,2400	сл.	0,162	сл.	0,1626	3	0,2995	7	0,292	cp.
0,2216	сл.	0,148	сл.	0,1532	2	0,2929	7	0,288	cp.
0,2080	cp.	0,144	сл.	0,1480	4	0,2831	6	0,276	сл.
0,2073	сл.	A	натаз	0,1451	3	0,2645	6	0,266	cp.
0,1990	сл.	0,352	0.C.	0,1410	2	0,2534	7	0,244	сл.
0,1898	cp.	0,237	cp.	0,1385	4	0,2470	6	0,232	СЛ.
0,1879	cp.	0,188	c.	0,1360	3	0,2390	6	0,216	C.
0,1864	сл.	0,170	cp.	0,1342	3	0,2286	7	0,200	C.
0,1796	сл.	0,166	cp.	0,1211	3	0,2130	4	0,192	cp.
0,1778	cp.	0,148	cp.	0,116	4	0,2097	7	0,185	cp.
0,1664	сл.	0,136	cp.	Каол	ІИНИТ	0,1991	6	0,180	c.
0,1621	сл.		нортит	0,720	80	0,1908	6	0,173	cp.
Ca(OH) ₂	2	(Са-поле шпат)	евои	0,445	80	0,1857	6	0,152	c.
0,493	50	0,408	3	0,430	64	0,1820	7	0,148	сл.
d,нм	ſ	d,нм	ſ	d,нм	ſ	d,нм	I	d,нм	I
0,146	c.	0,129	cp.	0,1297	8	0,2909	8	0,1308	2
0,142	cp.	0,127	c.	0,1272	4	0,2615	8	0,1258	3
0,136	сл.	0,123	0.C.	0,1246	8	0,2515	8	0,1224	2
0,132	сл.	0,118	c.	0,1221	4	0,2425	8	0,1188	1
0,129	cp.	Мусков	ИТ	0,1206	2	0,2170	10	0,1161	1
0,127	сл.	1,003	10	0,1193	2	0,2006	10	0,1141	2
0,119	cp.	0,502	5	0,1159	3	0,1910	2	0,1101	3
A	пьбит	0,452	7	0,1130	2	0,1741	2	0,1054	3
природн	ый	0,389	3	0,1115	6	0,1670	10	F	e_3O_4
0,395	cp.	0,3505	5	0,1104	2	0,1531	10	0,297	30
0,367	cp.	0,3342	9	0,1045	5	0,1362	10	0,2541	100
0,362	сл.	0,3204	4	Биот	ТИТ	0,1324	6	0,2100	30
0,342	c.	0,3095	6	0,992	0.C	0,1307	6	0,1612	60
0,327	сл.	0,2862	7	0,750	сл.	0,1294	2	0,1270	
0,313	0.C.	0,2783	5	0,337	0.C.	0,1258	4	0,1479	80
0,290	c.	0,2568	10	0,294	сл.	0,1219	6	F	eO

r	1	1	r			1			
0,278	сл.	0,2471	2	0,265	cp.	0,1130	6	0,247	7
0,260	сл.	0,2374	7	0,253	c.	0,1085	4	0,214	10
0,251	cp.	0,2250	2	0,246	cp.	0,1063	4	0,151	8
0,216	cp.	0,2186	3	0,219	cp.	0,1047	4	0,1293	4
0,205	сл.	0,2125	7	0,202	c.	0,1018	4	0,1238	2
0,190	cp.	0,1987	8	0,190	cp.	Гематит		0,1072	1
0,185	c.	0,1868	2	0,169	c.	0,365	3	0,0984	1
0,180	c.	0,1647	8	0,156	c.	0,2694	10	0,0959	2
0,177	cp.	0,1596	3	0,143	сл.	0,2513	10	0,0876	1
0,166	c.	0,1555	4	0,137	c.	0,2438	3	Кальци	Т
0,150	cp.	0,1519	4	0,132	сл.	0,2203	6	0,3849	2
0,144	0.C.	0,1498	10	0,128	cp.	0,1842	7	0,3029	10
0,142	0.C.	0,1448	2	Флогопит		0,1692	8	0,2490	5
0,136	cp.	0,1427	3	0,369	6	0,1481	7	0,2277	6
0,134	0.C.	0,1352	8	0,336	10	0,1455	7	0,2088	7
0,132	cp.	0,1335	5	0,314	6	0,1353	3	0,1912	8
d,нм	I	d,нм	ſ	d,нм	ſ	d,нм	J	d,нм	I
0,1869	9	0,1695	2	0,1238	3	0,10132	7	0,0922	3
0,1626	2	0,1555	2	0,1167	4	0,09876	7	0,0847	3
0,1601	6	0,1493	2	0,1145	2	α- Кварц		0,0810	3
0,1520	6	0,1466	2	0,1124	4	0,443	60	0,0800	6
0,1473	3	0,1408	3	0,1110	5	0,342	100	0,0759	2
0,1440	5	0,1360	4	β- Κι	варц	0,255	60	0,0731	1
0,1418	4	0,1261	2	0,424	5	0,230	40	0,0723	2
0,1357	1	0,1238	5	0,334	10	0,222	60	0,0671	1
0,1338	2	0,1223	3	0,245	5	0,205	60	0,0666	1
0,1295	3	0,1205	4	0,228	5	0,185	90	C	aF_2
0,1233	3	0,1189	2	0,2231	4	0,171	40	0,3148	7
0,1179	4	0,1171	3	0,2123	5	0,157	80	0,1928	10
0,1152	6	0,1125	2	0,1975	4	0,1421	80	0,1644	7
0,1141	3	0,1106	3	0,1813	9	0,1393	80	0,1363	4
0,106	1	0,1034	4	0,1668	5	0,1292	60	0,1251	5
0 1044	1	I <u> </u>							
0,1044	10	Доломи	Т	0,1656	2	0,1277	60	0,1113	7

0,1009	6	0,3683	2	0,1450	4	0,1196	60	0,0964	5
Арагони	IT	0,2883	10	0,1380	8	0,1190	40	0,0922	6
0,3391	9	0,2664	2	0,1372	9	0,1113	20	0,0864	6
0,3270	7	0,2402	2	0,12852	6	0,1105	20	0,0834	4
0,2862	1	0,2191	5	0,12535	7	0,1044	20	0,0788	5
0,2696	8	0,2062	2	0,12260	5	Ca	0	CaO· A	l_2O_3
0,2478	7	0,2015	4	0,11978	8	0,276	40	0,554	cp.
0,2368	7	0,1785	6	0,11822	8	0,239	100	0,466	c .
0,2327	5	0,1768	3	0,11779	7	0,169	63	0,404	cp.
0,2100	5	0,1543	3	0,11512	7	0,1445	20	0,371	cp.
0,1971	10	0,1464	2	0,10798	8	0,1382	20	0,341	0.СЛ.
0,1879	8	0,1433	3	0,10622	2	0,1200	10	0,329	cp.
0,1811	8	0,1355	3	0,10462	6	0,1100	7	0,319	cp.
0,1738	9	0,1296	2	0,10420	5	0,1071	25	0,298	0.C
0,1722	5	0,1269	2	0,10330	7	0,0979	13	0,295	0.C.
d,нм	J	d,нм	I	d,нм	ſ	d,нм	ſ	d,нм	J
0,290	сл.	0,4235	cp.	0,179	5	0,253	20	0,5242	0.СЛ.
0,285	cp.	0,4080	cp.	0,165	4	0,243	70	0,3898	cp.
0,275	сл.	0,3618	0.СЛ.	0,161	18	0,241	70	0,3696	cp.
0,253	0.C.	0,3705	0.СЛ.	0,157	11	0,240		0,3056	СЛ.
0,250	0.C.	0,3501	0.СЛ.	0,152	6	0,230	70	0,2799	0.C.
0,243	с.	0,3332	сл.	0,148	14	0,229		0,2714	С.
0,242	0.C.	0,3052	0.СЛ.	0,138	11	0,219	30	0,2680	0.C.
0,239	0.C.	0,2993	0.СЛ.	0,135	6	0,212	20	0,2609	cp.
0,233	cp.	0,2834	сл.	0,132	7	0,204	60	0,2356	0.СЛ.
0,229	cp.	0,2787	cp.	0,125	7	0,197	30	0,2189	cp.
0,226	cp.	0,2700	0.СЛ.	3CaO· Al₂C	D ₃ *	0,192	60	0,2082	cp.
0,220	c.	0,2581	0.СЛ.	* Feg	$_2O_3$	0,187	50	0,1949	cp.
0,219	c.	0,2431	0.СЛ.	0,724	cp.	0,185	50	0,1903	0.СЛ.
0,216	сл.	0,2384	сл.	0,363	о.сл.	0,181	60	0,1884	сл.
0,213	cp.	0,2204	cp.	0,277	c.	0,176	100	0,1847	cp.
0,210	cp.	0,2040	сл.	0,267	cp.	0,175		0,1746	cp.
0,201	cp.	0,1908	c.	0,263	о.сл.	0,172	50	0,1669	0.СЛ.
0,200	сл.	0,1558	c.	0,220	0.СЛ.	0,171	20	0,1593	cp.

0,1956	cp.	0,1349	cp.	0,215	0.сл.	0,163	50	0,1578	0.СЛ.
0,1921	0.C	0,1206	cp.	0,204	cp.	0,161	30	0,1561	cp.
0,1909	cp.	3CaO· 3	Al_2O_3*	0,192	c.	0,155	20	0,1541	сл.
0,1830	cp.	* (CaSO ₄	0,181	сл.	0,152	70	0,1527	cp.
0,1802	0.сл.	0,372	100	0,157	сл.	0,147	30	0,1488	0.СЛ.
0,1780	0.СЛ.	0,322	15	0,153	сл.	0,145	20	0,1468	сл.
0,1740	cp.	0,312	4	2CaO· Al ₂ O	D ₃ *	0,144	50	0,1434	0.СЛ.
0,1721	cp.	0,288	11	* SiC	D_2	0,142	30	0,1411	сл.
0,1696	cp.	0,263	47	0,423	20	0,141	20	0,1375	0.СЛ.
3CaO∙ A	l_2O_3	0,243	19	0,371	60	0,139	30	0,1357	0.СЛ.
0,683	сл.	0,228	8	0,344	20	0,137	70	0,1341	cp.
0,623	0.сл.	0,224	6	0,306	60	0,136	50	β-CaO∙	SiO ₂
0,509	сл.	0,215	52	0,285	100	2CaO∙ Fe	$2O_3$	0,77	40
0,4604	0.СЛ.	0,211	4	0,272	20	0,7418	cp.	0,405	10
d,нм	ſ	d,нм	I	d,нм	I	d,нм	I	d,нм	I
0,383	80	0,280	60	0,2718	cp.	0,1584	сл.	0,1392	cp.
0,352	8	0,244	20	0,2609	c.	0,1574	сл.	0,1212	сл.
0,331	80	0,199	20	0,2546	сл.	3CaO· SiO₂		0,1198	cp.
0,309	30	0,197	100	0,2452	сл.	0,5901	сл.	0,1167	сл.
0,297	100	0,183	10	0,2434	сл.	0,3862	сл.	0,1158	сл.
0,280	10	0,175	10	0,2409	сл.	0,3022	c.	0,1142	сл.
0,272	10	0,170	10	0,2282	cp.	0,2957	cp.	0,1132	cp.
0,255	30	0,168	10	0,2196	cp.	0,2891	сл.	0,1123	сл.
0,247	60	0,161	10	0,2189	c.	0,2776	0.C.	0,1097	cp.
0,233	40	0,154	10	0,2166	сл.	0,2730	c.	0,1089	сл.
0,229	40	0,147	20	0,2132	сл.	0,2602	0.C.	0,1071	сл.
0,218	60	0,144	10	0,2094	сл.	0,2449	сл.	0,1066	сл.
0,201	20	0,141	10	0,2050	сл.	0,2326	cp.	0,1026	сл.
0,198	20	0,138	10	0,2047	сл.	0,2304	cp.	0,0996	сл.
0,191	20	0,129	10	0,2042	сл.	0,2185	0.C.	CaO· A	l_2O_3*
0,188	20	0,125	20	0,2026	сл.	0,2125	сл.	*	10H ₂ O
0,186	10	0,122	10	0,2020	сл.	0,2083	сл.	1,43	0.C.
0,183	60	0,120	10	0,1984	cp.	0,1979	cp.	0,716	0.C.
0,175	40	0,118	10	0,1913	сл.	0,1940	cp.	0,539	cp.

0,172	60	0,114	10	0,1897	сл.	0,1926	cp.	0,475	cp.
0,1602	40	0,111	10	0,1893	сл.	0,1863	0.C.	0,452	сл.
0,1531	10	β-2CaO·	SiO ₂	0,1847	сл.	0,1825	cp.	0,416	сл.
0,1478	20	0,465	сл.	0,1809	сл.	0,1797	сл.	0,372	cp.
0,1455	30	0,338	сл.	0,1803	сл.	0,1771	c.	0,356	C.
0,1358	30	0,324	сл.	0,1791	сл.	0,1752	c.	0,326	cp.
0,1332	10	0,305	сл.	0,1707	сл.	0,1632	c.	0,310	cp.
α-CaO· S	SiO ₂	0,2878	cp.	0,1635	сл.	0,1623	cp.	0,288	cp.
0,570	10	0,2813	cp.	0,1627	сл.	0,1543	cp.	0,269	cp.
0,437	10	0,2794	cp.	0,1610	сл.	0,1497	cp.	0,255	с.
0,404	10	0,2785	0.C.	0,1606	сл.	0,1481	cp.	0,247	cp.
0,342	20	0,2748	c.	0,1605	сл.	0,1466	сл.	0,236	cp.
0,323	80	0,2732	cp.	0,1587	сл.	0,1454	сл.	0,226	cp.
d,нм	I	d,нм	ſ	d,нм	I	d,нм	ſ	d,нм	I
0,218	cp.	0,282	cp.	0,273	cp.	0,561	0.C.	0,2401	сл.
0,211	cp.	0,257	сл.	0,245	c.	0,498	cp.	0,2230	cp.
0,206	cp.	0,247	cp.	0,241	cp.	0,486	сл.	0,2209	C.
0,194	cp.	0,230	0.C.	0,233	сл.	0,469	cp.	0,2185	сл.
0,183	сл.	0,223	0.C.	0,225	сл.	0,402	сл.	0,2154	cp.
0,179	cp.	0,204	c.	0,219	сл.	0,388	c.	0,1940	сл.
0,171	сл.	0,172	cp.	0,206	cp.	0,367	сл.	0,1840	cp.
0,164	cp.	0,171	сл.	0,199	сл.	0,348	cp.	0,1750	cp.
0,160	cp.	0,168	cp.	0,182	cp.	0,324	cp.	0,170	cp.
0,147	сл.	0,160	cp.	0,166	cp.	0,3016	сл.	0,166	cp.
0,138	cp.	0,141	cp.	0,163	cp.	0,2806	сл.	0,157	cp.
3CaO∙ A	l_2O_3*	3CaO·A	l_2O_3*	0,144	сл.	0,2773	cp.	0,150	cp.
*6H ₂ O		*CaSO ₄ ·	12H ₂ O	0,139	сл.	0,2714	сл.	0,145	сл.
0,514	c.	0,8921	0.C.	3CaO·Al ₂ O	3*	0,2697	cp.	0,134	сл.
0,445	cp.	0,446	c.	*3CaSO ₄ ·3	2H ₂ O	0,2680	сл.		
0,337	cp.	0,399	c.	0,973	0.C.	0,2616	cp.		
0,315	cp.	0,287	0.C.	0,886	cp.	0,2564	c.		

1. Михеев В. И. Рентгенометрический определитель минералов. - Госгелиздат, 1957.-250 0.

2. Михеев В.И., Салъдау Э.П. Рентгенометрический определитель минералов. -Л.: Недра, 1965. -363с.

3. Горшков В.С., Тимашев В.В., Савельев В.Г. Методы физикохимического анализа вяжущих веществ. - М.: Высш. шк., 1981. – 363т с.

4. Миркин Д. И. Справочник по рентгеноструктурному анализу поликристаллов. - М. Физматгиз, 1961. - 235 с.

5. Гиллер ЯЛ, Таблицы межплоскостных расстояний. - М.: Недра, 1966. - Т.2. - 362 с.

3. ИК-спектроскопический метод исследования структуры вещества

Спектроскопия - раздел физики, изучающий спектры электромагнитного излучения, поглощаемого, испускаемого и рассеиваемого веществом ИК спектроскопия относится к молекулярной спектроскопии, позволяющий получать информацию о структуре вещества в различном агрегатном состоянии, силах межмолекулярного взаимодействия, состоянии и форме существования вещества.

В основе метода молекулярной спектроскопии лежит взаимодействие вещества с электромагнитным излучением в определенной области спектра.

3.1. Электромагнитный спектр

Электромагнитный спектр охватывает широкую область: от жесткого γ излучения с очень короткой длиной волны ($\lambda \sim 10^{-10}$ см) до длинноволнового радиоизлучения ($\lambda \sim 10^3$ - 10^5 см).

Электромагнитное излучение характеризуется энергетическими либо волновыми параметрами. Энергетический параметр - энергия кванта излучения Е (кДж/моль, эВ). Наиболее высока энергия γ-излучения- Е~10⁶ эВ, наиболее мала энергия радиоизлучения - Е~10⁻³-10⁻⁹ эВ.

К волновым параметрам относятся: I) длина, волны λ, см; 2) частота колебаний v, см; 3) волновое число ύ, см.

Частота v связана с длиной волны - λ соотношением v = c/ λ , где с - скорость света, равная 2,99-10¹⁰ см/с.

Волновое число $\dot{\upsilon} = \upsilon / c = 1/\lambda$ показывает, сколько волн данной длины укладывается на I см. Используется в спектроскопии для характеристики частоты.

Взаимодействие электромагнитного излучения с веществом сопровождается ядерными, атомными или молекулярными процессами, характер которых определяется энергией излучения. Молекулярным процессам соответствует определенная область электромагнитного спектра, энергетические и волновые параметры которого приведены в табл. 3.1.

Процесс	Область спектра	Энергия кванта излучения Е, кДж/моль	λ, см	ΰ, см ⁻¹
Электронные валентные переходы	Ультра- фиолетовая	5.10-16-1.10-15	4·10 ⁻⁵ - 2·10 ⁻⁵	$2 \cdot 10^4$ - $5 \cdot 10^4$
	Видимая	2.10-16-5.10-16	8·10 ⁻⁵ - 4·10 ⁻⁵	10^{4} - 2·10 ⁴
Колебания ядер	Инфра- красная	8.10-18-2.10-16	2·10 ⁻³ - 8·10 ⁻⁵	$4 \cdot 10^2$ - 10 ⁴
Вращение молекул	Дальняя инфракрасная	2.10-18-8.10-18	10 ⁻² - 2·10 ⁻³	$10^{2}-4\cdot 10^{2}$
	Микро- волновая	2.10-21-2.10-18	10- 10 ⁻²	10 ⁻¹ - 10 ²

Молекулярные процессы и электромагнитный спектр

3.2. Молекулярные спектры

При взаимодействии электромагнитного излучения с веществом энергии молекул вещества увеличивается, и молекула переходит в возбужденной состояние. При возбуждении молекулы электроны перемещаются на более высокие энергетические уровни. Одновременно изменяются энергии колебания ядер и вращения молекул (колебательные и вращательные уровни). В возбужденном состоянии молекула существует очень короткое время (10^{-3} - 10^{-8} с). При переходе из одного состояния в другое система поглощает или испускает энергию в виде кванта, величина которого равна разности энергий двух состояний: $hv=E_2-E_1$, где E_1 и E_2 - энергия нижнего и верхнего энергетических уровней; h - число Планка, равное 6,63* 10^{-34} Дж*с.

При этом в спектре возникает линия с частотой или волновым числом

 $v = E_2 - E_1/h$

или волновым числом
$$\acute{\upsilon} = E_2 - E_1 / hc.$$

Переходы с нижнего энергетического уровня на верхний, дают спектр поглощения, с верхнего на нижний - спектр испускания.

Спектры молекул изучают в основном как спектры поглощения (абсорбционные).

Молекулярные спектры значительно сложнее атомных и состоят не из отдельных линий, а из полос. Поглощение квантов света молекулой приводит к изменению вращательной колебательной и электронной энергий, которым соответствуют три вида спектров;

1) вращательный, состоящий из отдельных линий;

2) колебательный (колебательно-вращательный), состоящий из полос, так как колебательные переходы сопровождаются вращательными;

 электронный (электронно- колебательно-вращательный), состоящий из серий полос, образованных наложением изменения электронных, колебательных и вращательных состояний (E_{эл} > E_{кол}> E_{вр}).

3.3 Законы поглощения

Электромагнитное излучение источника пропускаемое через вещество будет им поглощаться в одной или нескольких областях излучения. Интенсивность исходного излучения J_0 после прохождения через вещество будет уменьшаться до величины J. Отношение интенсивностей падающего J_0 и прошедшего J излучений J/J₀ называется пропусканием, %;

$$\Gamma = (\mathbf{J} \cdot 100) / \mathbf{J}_0.$$

Для характеристики поглощенного излучения используют также оптическую плотность *D* равную десятичному логарифму отношения J₀/ J

$$D = lg (J_0/J)$$

Согласно закону Ламберта - Беера, оптическая плотность пропорциональна количеству поглощающих частиц, то есть зависит от концентрации вещества *С* и толщины поглощающего слоя вещества *l*:

$$D = \varepsilon C l?$$

где *є* - коэффициент пропорциональности, называемый коэффициентом поглощения (экстинции).

Если *С* измеряют в молях на литр, а l - в сантиметрах, ε называется молярным коэффициентом поглощения, его размерность -л*моль⁻¹ ·см⁻¹.

3.4. Спектры поглощения

Графическое изображение зависимости поглощенного (пропущенного) излучения данной энергии от энергии квантов называется спектром поглощения. Спектр представляет собой кривую с максимумами (минимумами). Область спектра, в которой поглощение проходит через максимум (минимум), называется, полосой поглощения.

Полоса поглощения характеризуется:

1) положением (абсциссой) максимума поглощения – ύ_{макс} (λ_{макс})

2) интенсивностью (ординатой) максимума поглощения - $T_{\text{макс}}$ ($D_{\text{макс}}$ или $\varepsilon_{\text{макс}}$)

Положение полосы определяется изменениями энергии системы, происходящими при поглощении. Чем меньше энергия, требуемая для перехода из одного состояния в другое, тем ниже частота поглощения кванта, тем в более длинноволновой области спектра лежит полоса поглощения.

Интенсивность полосы определяется вероятностью данного перехода, вызвавшего полосу. Чем больше вероятность, тем выше Т (*D* или *є*). Интенсивность пропорциональна количеству поглощающих частиц, т.е. концентрации вещества.

3.5. Колебания многоатомных молекул

В многоатомной молекуле ядра совершают сложные колебательные движения, которые можно представить как наложения нормальных колебаний. Нормальное колебание - это колебание, при котором вое ядра молекулы совершают движения с одинаковой частотой и одинаковой фазой т.е. одновременно проходят через состояние равновесия.

У молекулы, состоящей из атомов, существует 3*n* степеней свободы. Три из

них приходятся на поступательное движение. Еще три для нелинейной молекулы - на вращательное (вращение относительно трех декартовых осей координат). У линейной молекулы две степени свободы вращательного движения, так как момент инерции относительно оси, проходящей через ядра, равен нулю. Тогда для колебательного движения число степеней свободы $f_{\text{кол}}$ равно разности между их общим числом и суммой степеней свободы, приходящихся на поступательное и вращательное движения.

Для линейных молекул $f_{\text{кол}} = 3n - 5$.

Для нелинейных молекул $f_{\text{кол}} = 3n$ -6.

Пример. Линейная молекула CO_2 и нелинейная (угловая) молекула H_20 состоящие каждая из трех атомов, имеют 9 степеней свобода (3*3 = 9). Число нормальных колебаний у CO_2 равно четырем (9 - 5)= 4, а H_20 -трем (9 - 6 = 3) (рис.3.1)

Рис. 3.1. Нормальные колебания в молекулах CO_2 и H_2O :

 v_1 (S)- валентные симметричные; v_2 (*a*S) - валентные асимметричные; δ (S) - деформационно симметричные

Нормальные колебания бывают следующих видов:

1) валентные - колебания, при которых движение атомов происходит вдоль линии связи, при этом изменяется межъядерное расстояние) обозначаются буквой v;

2) деформационные - колебания, при которых движения атомов сопровождаются изменением валентного угла между связями, обозначаются буквой δ ;

Число валентных колебаний молекулы, содержащей n атомов, равное n - I. Валентные колебания бывают симметричными S и асимметричными *a*S, у последних колебания сопровождаются изменением симметрии, равновесной конфигурации молекулы.

У молекулы *C0*₂ два деформационных колебания совершаются с одинаковой частотой в двух взаимно перпендикулярных плоскостях. Массы колеблющееся атомов и химические связи между ними различны, поэтому каждое колебание осуществляется с определенной частотой.

Электромагнитное поле взаимодействует с электрическим диполем, поэтому поглощают только полярные молекулы. В ИК спектре активны те нормальные колебания, при которых изменяется дипольный момент μ молекулы, т.е. его производная по координате q в положении равновесия отлична от нуля $\partial \mu / \partial q \neq 0$.

При поглощении кванта молекулой возбуждается лишь одно нормальное колебание, например, с частотой v_{κ} . Если данное колебание, активно в ИК спектре, ему соответствует полоса в колебательном спектре с частотой v, равной собственной частоте нормального колебания $v = v_{\kappa}$.

Частота v называется фундаментальной или основной. Для каждого из активных колебаний в спектре наблюдается своя фундаментальная частота.

<u>Характеристические частоты</u>. В нормальном колебании участвуют одновременно все атомы молекулы. Однако может преобладать колебание по одной связи (например, С-С или С-Н). Измеренную частоту при этом можно отнести к колебанию этой связи. Бели колебание данной связи не изменяется при переходе к другим молекулам, содержащим данную группу атомов (функциональную группу), такое колебание называют характеристическим.

Частоты, соответствующие характеристическим колебаниям определенной функциональной группы, называют характеристическими.

Обнаружение характеристических частот в спектре соединения позволяет сделать вывод о наличии в нем определенных функциональных групп и проводить идентификацию соединений, составляющую основу молекулярного спектрального анализа.

<u>Пример.</u> В ИК спектре соединения наблюдаются полосы в области 800... 1200 см⁻¹, полосы 3000 см⁻¹ и 3700 см⁻¹. Определить тип соединения. Согласно таблице характеристических частот колебаний химических связей производим отнесение полос к определенной связи:

положение полосы,	химическая
CM ⁻¹	СВЯЗЬ
800-1200	C-C
3000	C-H
3700	О-Н

Исследуемое соединение можно отнести к алифатическому спирту.

3.6. Инфракрасный спектрофотометр

ИК спектры соединений получают с помощью ИК спектрофотометров, измеряющих поглощение в области спектра от 400см⁻¹ -до 5000 см⁻¹.

Основные узлы спектрофотометра:

- источник излучения силитовый стержень, нагреваемый током до температуры 1200 °C;
- монохроматор система призм из монокристаллов КВч, (400...700 см⁻¹), NaCl(700... 1800 см⁻¹), LiF (1800...5000 см⁻¹) и дифракционная решетка;
- приемник инфракрасного излучения вакуумный термоэлемент;
- измерительно-регистрирующее устройство.

Луч источника ИК излучения I (рис. 3.2) зеркалами 2 делится на два пучка, проходящих через кюветный отсек 3, содержащий исследуемый образец 3а и образец сравнения 36. Оба пучка сходятся у зеркального модулятора 4, направляющего их во входную щель 5 монохроматора 6. Фокусирующая оптика 7 и диспергирующая система 8 создают в фокальной плоскости монохроматическое изображение входной щели, а совокупность этих изображений образует спектр, который через выходящую щель 9 направляется на приемник 10. Вакуумный

термоэлемент превращает выделенный монохроматором компонент модулированного излучения в электрические сигналы, поступающие на измерительное и регистрирующее устройство II.

Рис. 3.2. Оптическая схема двухлучевого ИК спектрофотометра

Современные ИК спектрофотометры автоматически регистрируют ИК спектры твердых, жидких и газообразных веществ. Запись спектра производится на калиброванном бумажном бланке, на оси абсцисс отложена шкала волновых чисел (см⁻¹), а на оси ординат - процент пропускания. Скорость записи спектра можно изменять в пределах от 2 мин до 4 ч.

3.7. ИК спектры силикатов, с различным строением кремнийкислородного

радикала

Класс силикатов делится на следующие подклассы:

I. Орто- и диортосиликаты. Класс ортосиликатов охватывает разнообразные соединения с различными катионами и кристаллическими структурами. Соединения этого класса отличаются несложной структурой сильных полос поглощения в области 850...1000 см⁻¹, обусловленных колебаниями групп *SiO*₄. Силикаты со структурой типа оливина имеют также три полосы поглощения средней интенсивности в области 650.....450 см⁻¹.

2. Кольцевые силикаты [Si₃O₉], [Si₄O₁₂], [Si₆O₁₈] и [Si₁₂O₃₀]. Для силикатов с кольцевым строением кремнийкислородного радикала характерно наличие полос поглощения в области 750... 850 см⁻¹.

3. Цепочечные силикаты [Si₂O₆]- радикалы. Силикаты, имеющие структуру цепочек, в области спектра 9.,.12 мкм содержат большей частью три сильные полосы поглощения, число частот в области 550...700 см⁻¹, соответствующих симметричному колебанию Si –O– Si, позволяет судить, о числе тетраэдров в периоде повторяемости.

4. Листовые или слоистые силикаты [Si₂O₅]- радикалы. Кремний всегда имеет координационное число 4 и координационный многогранник тетраэдр. Несмотря на большую сложность химического состава слоистых силикатных минералов, содержащих кремнийкислородные листы, все они имеют одну или две сильные полосы поглощения между 9,4 и 10,4 мкм. Слоистые силикаты обнаруживают одну интенсивную полосу у 1000 см⁻¹ и более слабые полосы в районе 1111 см⁻¹ и 909 см⁻¹.Замещение *Al* на *Mg* и *Fe* приводит к уменьшению числа полос поглощения и вызывает смещение сильной Si - 0 полосы.

Например: пирофиллит Al₂[Si₄O₁₁](OH)₂ -1048см⁻¹ тальк Mg₃[Si₄O₁₀](OH)₂ -1018 см⁻¹ мусковит K[AlSi₃O₁₀](OH)₂ -1028 см⁻¹

3.9. Список литературы

 Плюснина И.И. Инфракрасные спектры силикатов. – М.: Изд-во Моск.ун-та,19677-189 с.

2. Горшков В.С., Тимашев В.В., Савельев В.Г. Методы физико-химического анализа вяжущих веществ. - М.: Высш. шк., 1981. – 335 с.

Контрольные вопросы:

- 1. Дайте определение таким понятиям как спектроскопия и ИКспектроскопия.
- 2. Опишите типы колебаний, которым подвергаются молекулы, при прохождении через них ИК-излучения.
- 3. Чем отличаются колебания многоатомных молекул от одноатомных молекул.
- 4. Будут ли отличаться, колебания линейных и нелинейных молекул.
- 5. Чем отличаются спектры поглощения от спектров пропускания.
- 6. В чем отличие валентных и деформационных колебаний.
- 7. Для каких агрегатных состояний вещества применим ИКспектроскопический анализ.
- 8. Какие требования к эталону для снятия спектра порошкообразного вещества.
- 9. ИК-спектроскопия это количественный или качественный метод анализа.
- 10.Какие области спектра вам известны. Какие процессы происходят в молекулах в разных областях спектров.
- 11. Что такое характеристические частоты (полосы).
- 12. С каких основных узлов состоит ИК спектрофотометр.
- 13. Сформулируйте закон Ламберта-Бера.

Содержание

1. Термический анализ	3
1.1. Дифференциальный термический анализ (ДТА)	4
1.1.1. Определение характеристик термических эффектов	6
1.1.2. Факторы, влияющие на результаты ДТА	7
1.2. Качественный фазовый анализ	13
1.3. Количественный фазовый анализ	21
1.4. Метод термогравиметрии (ТГ)	22
1.5. Метод дифференциальных термогравиметрических кривых	
(дат)	23
1.6. Комплексный термический анализ	24
1.7. Перечень вопросов для коллоквиума	29
1.8. Список литературы •••	30
2.Рентгеноотруктурный анализ	30
2.1. Основное уравнение рентгенофазового анализа	33
2.2. Основные методы рентгеноструктурного анализа	34
2.2.1. Метод. Лауэ (метод неподвижного монокристалла)	34
2.2;2. Метод вращения монокристалла	35
2.2.3* Метод порошка (метод Дебая - Шерера)•«	35
. 2.3. Приготовление препаратов для рентгеноструктурного	
анализа по методу порошка	36
2.4. Современные методы регистрации дифрагированных рентген	овских
лучей	36
2.5. Применение рентгеновского анализа для исследования силик	атных
материалов	37
2.6. Перечень вопросов для оамоподготовки	. 43
2.7. Список литературы49	
3.ИК спектроскопический метод иооледования структуры вещества	ı49
3.1. Электромагнитный спектр	50

3.2. Молекулярные спектры	51
3.3. Законы поглощения	
3.4. Спектры поглощения	52
3.5. Колебания многоатомных молекул	53
3.6. Инфракрасный спектрофотометр	55
3.7. ИК спектры силикатов о различным строением кремний-	
кислородного радикала	56
3.8. Примеры применения ИК спектроскопии при изучении си	ликатных
материалов	
3.9. Список литературы	61

методические указания к практическим занятиям по курсу "Основы научных исследований" для студентов специальности "Химическая технология тугоплавких неметаллических и силикатных материалов"

> Составители Гумен Василий Степанович Ващинская Валентина Валерьяновна

> > Редактор Н. А. Назаренко Корректоры Н.Л. Савченко Т.М.Ронская А. Ф. Островершенко

Величина	ЕДИНИЦЫ						
	Наименование	Обозначение					
		международное	русское				
ОСНОВНЫЕ ЕДИНИЦЫ СИ							
Длина	метр	m	М				
Macca	килограмм	kg	КГ				
Время	секунда	S	с				
Сила электрического тока	ампер	А	А				
Термодинамическая температура	кельвин	К	К				
Количество вещества	МОЛЬ	mol	МОЛЬ				
Сила света	кандела	cd	КД				
ДОПОЛНИТЕЛЬНЫЕ ЕДИНИЦЫ							
Плоский Угол	радиан	rad	рад				
Телесный угол	стерадиан	sr	cp				

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ .

Величина	ЕДИНИ	Выражение через		
	Наименован	Обозначен	ие	основные и
	ие	между- народное	русс кое	единицы СИ
Частота	герц	Hz	Гц	c ⁻¹
Сила	ньютон	Ν	Н	м ·кг·с ⁻²
Давление	паскаль	Ра	Па	$M^{-1} \cdot K\Gamma \cdot C^{-2}$
Энергия	джоуль	J	Дж	$M^2 \cdot K\Gamma \cdot C^{-2}$
Мощность	ватт	W	Вт	$M^2 \cdot K\Gamma \cdot C^{-3}$
Количество электричества	кулон	С	Кл	c·A
Электрическое напряжение	ВОЛЬТ	V	В	м ² ·кг·с ⁻³ ·А ⁻¹
Электрическая емкость	фарад	F	Φ	$\mathbf{M}^2 \cdot \mathbf{K} \mathbf{\Gamma}^{-1} \cdot \mathbf{c}^4 \cdot \mathbf{A}^2$
Электрическое сопротивление	Ом	Om	Ом	$\mathbf{M}^{-2} \cdot \mathbf{K} \mathbf{\Gamma} \cdot \mathbf{c}^{-3} \cdot \mathbf{A}^{-2}$
Электрическая проводимость	сименс	S	См	$\mathbf{M}^{-2} \cdot \mathbf{K} \mathbf{\Gamma}^{-1} \cdot \mathbf{C}^3 \cdot \mathbf{A}^2$
Поток магнитной	вебер	Wb	Вб	$M^2 \cdot K\Gamma \cdot c^{-2} \cdot A^{-1}$

индукции				
Магнитная индукция	тесла	Т	Тл	$\kappa \Gamma \cdot c^{-2} \cdot A^{-1}$
Индуктивность	генри	Н	Гн	$M^2 \cdot K\Gamma \cdot C^{-2} \cdot A^{-2}$
Световой поток	люмен	lm	ЛМ	кд-ср
Освещенность	люкс	lx	лк	м-2-кд.ср
Активность	беккерель	Bq	Бк	c ⁻¹
радионуклида				
Поглощенная доза	грей	Gy	Гр	$M^2 \cdot \Gamma \cdot c^{-2}$
ионизирующего излучения				
Эквивалентная доза	зиверт	Sv	Зв	
излучения				